搜索资源列表
Gauss_Seidel_iterative
- 迭代法是解线性代数方程组的另一类方法,特别适用于解大型稀疏线性方程组。它的基本思想是针对求解问题预先设计好某种迭代格式,从而产生求解问题的近似解迭代序列,在迭代序列收敛于精确解的情况下,按精度要求取某个迭代值作为问题解的近似值。迭代法具有原始系数举证始终不变,算法简单,编写程序较方便,所需存储单元较少的优点。-iterative method was the linear algebraic equations of the other methods, particularly applica
parabolic_equation_ADI.rar
- 求解抛物型方程的交替隐方向P-R差分格式的matlab程序实现。不过大家在用的时候要用到原函数f.m和精确解函数uexact.m,应用程序的时候只要修改精确解和右端项就可以了。,Solving Parabolic Equations PR alternating direction implicit difference scheme of matlab program. But we can use the time to use the original function fm and th
project2
- 有限差分法求解泊松方程 一个例子 比较精确解和数值解-Finite Difference Method for Poisson equation; An example to compare the exact solution to the numerical solution
Rimann
- 激波管问题Rimann精确解,非常不错啊-Exact Solutions of shock tube problem shock wave tube-Rimann
ga
- 下面的程序是求多项式y=x^6-10x^5-26x^4+344x^3+193x^2-1846x-1680在区间[-8,8]的最小值,误差不超过0.001。对于这个复杂的多项式,可先用matlab绘制函数的大概曲线,确认函数的最小值大概处于[-8,8]之间,再用本程序求出精确解。 -The following procedure is a polynomial y = x ^ 6-10x ^ 5-26x ^ 4+344 x ^ 3+193 x ^ 2-1846x-1680 in the inter
Runge--kutta
- 编程实现龙格--库塔方法,并与精确解比较-compare runge--kuta
work
- 用显示euler法、heun法、中点法和rk4方法求解一阶微分方程精确解和数值解的程序-Euler method with the show, heun method, midpoint method and rk4 exact method for solving first order differential equations and numerical solutions of the procedures
hanming
- 利用常用四阶龙格-库塔公式求初值,再利用汉明公式、米尔恩公式和改进的四阶亚当斯隐式公式及常用的四阶龙格-库塔公式求解其余的数值解求解常微分方程初值问题,并计算它与精确解的误差-Use of commonly used fourth order Runge- Kutta initial value to the Formula, and then use the Hamming formula, Milne formula and improved fourth-order implicit Ad
longjie
- 利用常用的四阶龙格-库塔公式求初值再分别利用米尔恩公式和改进的亚当斯方法及常用的四阶龙格-库塔公式求解其余的数值解,并计算它们与精确解的误差-By use of Runge- Kutta formula and then find the initial value, respectively, and improved the formula by Milne Adams methods and commonly used Runge- Kutta formula to solve the r
yadangsi
- 利用四阶亚当斯隐式公式求解常微分方程初值,并计算它与精确解的误差-Using fourth-order implicit Adams formula for solving initial value ordinary differential equations, and calculate the error with the exact solution
centerexact(fab)
- 中心显示格式求解poisson方程与精确解在绝对值型误差下的误差值,矩形区域,狄利克雷边界情况!-Center display format and exact solutions for solving the poisson equation error in the absolute value of the type of error values, rectangular area, Dirichlet boundary conditions!
exactyf
- 迎风格式求解poisson方程及方程的精确解,矩形区域,狄利克雷边界情况!-Upwind scheme for solving poisson equation and exact solutions of equations, rectangular area, Dirichlet boundary conditions!
chengxu
- 用Ritz-Galerkin方法解边值问题: u +u=-x,0<x<1, u(0)=u(1)=0,精确解为u*(x)=sinx/sin1-x; 得出结果与精确解作比较,画出误差分析图-With the Ritz-Galerkin method to solve the boundary value problem: u' ' + u =- x, 0 <x<1, u(0)=u(1)=0,精确解为u*(x)=sinx/sin1-x; 得出结果
1Dnumerical-reservoir-simulation
- 油藏一维一相数值模拟,使用不同方法进行比较有,显式差分格式,隐式差分格式,及精确解的比较-One phase of one-dimensional numerical reservoir simulation, using different methods compared, explicit difference scheme, implicit difference scheme, and the comparison of exact solution
Ritz_solution
- Ritz法解决-u +u=x 0<x<1,u(0)=0,u(1)=0的有限元边值问题。精确解为u(x)=1/(exp(1)-1/exp(1))*exp(-x)+1/(1/exp(1)-exp(1))*exp(x)+x,基函数为g(i)=sin(i*pi*x)-This matlab code is used to solve the boundary value problem of the differential equation: -u +u=x 0<x<1
demo_nnls
- PLS - DN是一个有限的牛顿为解决非退化的分段线性系统的算法。 PLS - DN的展品可证明半迭代 财产即在全球范围内的精确解在有限数量的迭代算法收敛。被证明是收敛速度 至少前终止线性。 广泛的算法是在我们的AISTATS 2011纸描述:“一个非退化的分段线性系统的有限牛顿算法”。此演示包重新运行 在解决非负最小二乘法(NNLS)问题上的三个稀疏的设计矩阵,从哈威尔波音收集(达夫等人,1989年)第4.2节的实验。 随着PLS - DN,此演示包建
WinRAR-
- 雅克比迭代解非齐次线性方程组,逐次求出近似解逼近精确解-Jacobi iterative solution of non-homogeneous linear equations, the successive approximation of the exact solution obtained approximate solution
work
- 四阶龙格库塔法解微分方程,并与ode45,精确解比较-Fourth-order Runge-Kutta method for solving differential equations with ode45 exact solution
matlab
- 对节点数N=5的泊松边值问题进行超松弛迭代计算,迭代因子w=1,1.25,1.5。结果输出迭代次数、迭代解与精确解的2-范数以及画图表示最终结果。-The number of nodes N = and The Poisson Boundary Value overrelaxation iterative iterative factor w = 1,1.25,1.5. Output result the number of iterations, the iterative solution
HPI
- 用精细积分法进行算例,与精确解相比较,求得相对误差值。-Precise Integration Method