搜索资源列表
Cluster111
- C-均值动态聚类算法 matlab 很简单对 一组样本点的分类和中心点-C - Means clustering algorithm Matlab is very simple sample of a point and focal point for the classification
使用减法聚类初始化fcm算法的聚类中心
- subclutering initializing fcm: 开发语言:matlab 功能:使用减法聚类初始化fcm算法的聚类中心,可以快速找到合适的初始聚类中心
kMedoids.rar k-中心聚类算法的matlab实现
- k-中心聚类算法的matlab实现。直接读取文档数据,没有维限制。,k-Medoids clustering algorithm matlab implementation. Document data read directly, there is no dimension restrictions.
GAFCM
- 遗传算法改进的模糊C-均值聚类MATLAB源码 模糊C-均值算法容易收敛于局部极小点,为了克服该缺点,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,由遗传算法得到初始聚类中心,再使用标准的模糊C-均值聚类算法得到最优分类结果。 -Value algorithm (FCM) of the optimization calculations, by the genetic algorithm is the initial cluster centers, and the
最短距离聚类的matlab的实现
- 最短距离聚类的matlab的实现,最短距离聚类 %说明:此程序的优点在于每一步都是自己编写的,很少用matlab现成的指令, %所以更适合于初学者,有助于理解各种标准化方法和距离计算方法。 %程序包含了极差标准化(两种方法)、中心化、标准差标准化、总和标准化和极大值标准化等标准化方法, %以及绝对值距离、欧氏距离、明科夫斯基距离和切比雪夫距离等距离计算方法。
C-means
- 使用c-均值聚类算法在IRIS数据上进行聚类分析,随机选择三个初始聚类中心,经过多次迭代,最终将150个样本分为三类。-Use c-means clustering algorithm in the IRIS data on the cluster analysis, three randomly chosen initial cluster centers, through a series of iterative, 150 samples will eventually fall into
kmean
- 给定很多数据点之后找这些类的聚类中心,然后重新分类。-Given after a lot of data points to find these kind of cluster center, and then reclassified.
rbf_atrifical_neual_networks
- ① 样本数据从MATLAB命令窗口或新建一M文件作为数据输入文件,样本输入变量名为samin,样本输出变量名samout 样本个数和每个样本的维数可任意,样本输出的个数与样本个数应一致,即保证每个样本都对应一个期望输出,但每个输出的维数不要求与输入的维数相同,可任意; ② 聚类中心的个数(即基函数的个数)可根据实际情况调整;同样可调整参数的还有重叠系数、聚类中心最大更新次数、聚类中心更新终止误差; ③ 训练结束后进行测试时,要求输入的测试数据与样本具有相同的维数,测试数据的个数可任意;
k-means
- 用c程序和matlab分别试验一种k-means改进算法,按照方法选取聚类中心点,事实证明,这种改进是有效的。-Matlab with c procedures and were experimenting with an improved k-means algorithm, in accordance with the method of selecting cluster center, the facts show that this improvement is effective.
midu
- matlab的一种基于密度的聚类方法,和划分方法和中心计算方法比较效果较好-matlab a density-based clustering method, and the division method and the calculation of comparative effectiveness center is better
proj10-01
- 在试验中编写程序实现了K均值聚类算法,K均值聚类的原理是:在训练样本中找到C个聚类中心,每个聚类中心代表一个类的中心。然后将样本归类到与其最近的聚类中心的那一类。 C的选择是通过先验知识或经验选取的。聚类中心是通过算法迭代求得的。-In the test preparation process to achieve a K means clustering algorithm, K means clustering principle is: in the training samples to
BSAS
- 顺序聚类算法-BSAS,并在MATLAB上实现。在输入矩阵和参数后,对其进行顺序聚类,得到聚类类别标签和聚类中心-Sequential clustering algorithm-BSAS, and implemented on MATLAB. Parameters in the input matrix and its sequential clustering, and cluster by cluster category labels center
the-distance
- 以计算样本点到聚类中心的距离为例,学到matlab中矩阵在加权指数,迭代次数和误差的相关应用-Sample points to calculate the distance to the cluster center, for example, learn matlab in the matrix in the weighted index, the number of iterations and errors related applications
matlab
- 聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。所有资料中还是Andrew Ng介绍的明白。首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。初始化k个随机数据u1,u2,...,uk。这些xn和uk都是向量。根据下面两个公式迭代就能求出最终所有的u,这些u就是最终所有
ISODATA MATLAB编码
- 迭代自组织数据分析算法(Iterative Self-Organizing Data Analysis Techniques Algorithm,ISODATA)与K均值算法有相似之处,即聚类中心的位置同样是通过样本均值的迭代运算决定。不同的是,这种算法在运算的过程中聚类中心数目不是固定不变的,而是反复进行修改,以得到较合理的类别数K,这种修改通过模式类的合并和分裂来实现,合并和分裂在一组预先选定的参数指导下进行。
691698626subclustinializingfcm
- subclutering initializing fcm: 开发语言:matlab 功能:使用减法聚类初始化fcm算法的聚类中心,可以快速找到合适的初始聚类中心(subclutering initializing fcm:)
k聚类算法
- 基于matlab的K聚类分析算法,中心聚类对数据进行分类(Matlab based K clustering analysis algorithm)
K-means
- K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。(The K-means algorithm is a hard clustering algorithm, which is representative of the prototy
模拟退火和模糊C均值分类
- 遗传模拟优化初始聚类中心,模糊C均值聚类(Genetic algorithm is used to optimize initial clustering centers and fuzzy C means clustering.)
聚类算法
- matlab聚类算法 聚类(Cluster):相似文档的分组表达方式。在向量空间模型中,用户可以通过 比较查询向量和聚类的中心进行检索,并在聚类中进一步检索以找到最相似的文 档。