搜索资源列表
b
- :DBSCAN是一个基于密度的聚类算法。该算法将具有足够高密度的区域划分为簇,并可以在带有“噪声”的空间数 据库中发现任意形状的聚类。但DtLqCAN算法没有考虑非空间属性,且DBSCAN算法需扫描空间数据库中每个点的e一 邻域来寻找聚类,这使得DBSCAN算法的应用受到了一定的局限。文中提出了一种基于DBSCAN的算法,可以处理非空 间属性,同时又可以加快聚类的速度。-: DBSCAN is a density-based clustering algorithm. The alg
matlab 蚁群算法ACO_feature_selection
- 蚁群算法用与特征选择,针对传统蚁群聚类算法收敛速度过慢的问题,提出一种对蚁群算法进行改进的聚类算法。而数据的高维使数据具有稀疏、不可聚集等特性,使聚类算法实验效果精度低和耗时大,将邻域特征选择与聚类算法结合,提出了一种蚁群聚类优化的邻域特征选择算法(Ant colony algorithm and feature selection)