搜索资源列表
10_methods
- 在MATLAB环境下,背景为非高斯噪声下非常适用的滤波新算法。-in MATLAB environment, the background of the non-Gaussian noise filtering is applied to the new algorithm.
particlefilter
- 非常不错的非线性非高斯环境下的粒子滤波程序-very good nonlinear non-Gaussian environment under the particle filter process
MultilayerPerception
- 非常不错的非线性非高斯环境下的粒子滤波程序进化算法-very good non-linear environment Gaussian filter particles procedures evolutionary algorithm
pfdemo
- 程序为粒子滤波器跟踪算法的演示程序,粒子滤波器算法适用于非线性非高斯情况下的跟踪估计。本程序为pf专家程序,演示pf跟踪的核心思想,与大家共享。-procedures for tracking particle filter algorithm Demonstration Program, particle filter algorithm applicable to the non-linear Gaussian case tracking estimates. The procedures
ParticalText1
- 基本粒子滤波器的实现,对非线性非高斯目标可进行有效跟踪!-elementary particle filter to the realization of non-Gaussian nonlinear objectives can be effectively tracking!
mybss
- 盲信号分离是当前信号处理研究的热点课题之一,在无线数据通信、医学、语音以及地震信号处理等领域有着广阔的应用前景。基于负熵最大的FastICA算法用于实现盲信号分离。该方法的基本思路是以非高斯信号为研究对象,在独立性假设的前提下,对多路观测信号进行盲源分离。在满足一定的条件下,能够从多路观测信号中,较好地分离出隐含的独立源信号。
guass 高斯消去法求解线性方程组
- 高斯消去法求解线性方程组 输入变量为一个n阶非奇异方阵A,和n维列向量b,输出的结果为线性方程组Ax=b的解-Gaussian elimination method for solving linear equations
cyclic2_am.rar
- 基于matlab,针对调幅AM、调频FM和调相PM信号,分析在不同的噪声环境,包括高斯白噪声、色噪声、非高斯噪声及正弦干扰中,各种信号的二阶循环谱。可根据需要改变程序中信号或噪声环境,分析结果。,Based on matlab, AM for AM, FM FM and PM phase modulation signals, analysis of noise in different environments, including Gaussian white noise, colored
LPFleida
- Pf粒子滤波实现的目标跟踪程序,可实现针对非高斯噪声情况下的跟踪-Pf particle filter to achieve tracking procedures, can be non-Gaussian noise for tracking cases
gkdj
- 以为高斯和密度估计,使用高斯核的非参数密度估计方法,对样本进行概率密度估计,程序中给出了窗宽的估算公式。-That the Gaussian and density estimation, using Gaussian kernel non-parametric density estimation method, the sample probability density estimates, the program gives the formula for bandwidth estim
496876399457457454534
- 粒子滤波技术在非线性、非高斯系统表现出来的优越性,决定了它的应用范围非常广泛。另外,粒子滤波器的多模态处理能力,也是它应用广泛有原因之一。国际上,粒子滤波已被应用于各个领域。在经济学领域,它被应用在经济数据预测;在军事领域已经被应用于雷达跟踪空中飞行物,空对空、空对地的被动式跟踪;在交通管制领域它被应用在对车或人视频监控;它还用于机器人的全局定位。 -Particle filter technology in the non-linear, non-Gaussian system demon
kurtICA
- 本科毕业论文,基于非高斯性最大化的盲信号分离方法,适合本科生做毕业设计。-Undergraduate thesis, based on maximization of non-Gaussian signal separation method, suitable for undergraduate students to do graduate design.
An_improved_ekf_new_methods
- 本文对于非线性非高斯问题,提出了一种改进扩展卡尔曼滤波(NIEKF)新方法。该方法将迭代滤波理论引入到扩展卡尔曼滤波器方法中,有效地重复利用新的测量信息,还利用Levenberg-Marquardt 方法调整预测协方差阵以保证算法具有全局收敛性。实验结果表明,所提方法具有更高的估计精度,是一种效率较高、性能较好的跟踪方法。-This non-Gaussian for nonlinear problems, an improved extended Kalman filter (NIEKF) th
upf_demos
- 粒子滤波改进算法仿真比较,我觉得很好用,大家快下载,贝叶斯滤波适合非线性和非高斯环境,这种非线性统计理论很先进-Improved particle filtering algorithm for simulation and comparison, I feel useful, we quickly download, Bayesian filtering for nonlinear and non-Gaussian environment, which is very advanced sta
particlefilterprogram
- 对粒子滤波算法的原理和应用进行综述’首先针对非线性非高斯系统的状态滤波问题C阐述粒子滤波的原理D然后在分析采样=重要性=重采样算法基础上C讨论粒子滤波算法存在的主要问题和改进手段D最后从概率密度函数的角度出发C将粒子滤波方法与其他非线性滤波算法进行比较C阐明了粒子滤波的适应性C给出了粒子滤波在一些研究领域中的应用C并展望了其未来发展方向-QJPRQ Elc8&m :jelf dgwd99&jvdej gq:c&decwe 9d:ejv&chj&ec:d:cqi:pcrcw’8jfjgmdeelc
non-guassian
- 关于非高斯噪声环境下的各种调制方式信道容量仿真-Non-Gaussian noise environment on a variety of channel capacity modulation simulation
bimodal-noise
- 在复杂的电子系统中,影响信号接收的很多噪声为非高斯噪声,这些噪声是没有预料到的,以致破坏了接收机的功能,研究表明:这些噪声可以看成双模噪声,双模噪声从整体上讲属于非高斯噪声。-In complex electronic systems, many of the signal received by a non-Gaussian noise, the noise is not anticipated, resulting in damage to the receiver function, re
Guess
- 用m语言绘出高斯分布,并以GMM模型的简单例子来进行非曲线拟合。(The Gauss distribution is drawn in M language, and a simple example of the GMM model is used to do the non curve fitting.)
gauss
- 采用高斯消元法,实现线性非齐方程求解,并且具有回代,可以直接论证方案。具有一般性,和参考性。(The Gauss elimination method is used to solve the linear non-homogeneous equation, and it can be used to prove the scheme directly. It is general and referential.)
Matlab
- 能够计算非齐次方程组的解,程序清晰的解释了高斯消去法的过程和原理,有助于读者理解高斯消去法,从而更好的进行其他相关的复杂编程(It is possible to compute the solution of the homogeneous equations, and the program clearly explains the process and principle of the Gauss elimination method, which helps the reader to