搜索资源列表
11
- L-M优化算法(trainlm)和贝叶斯正则化算法(trainbr)
BPtrainlmtrainbr.rar
- 用L-M 优化算法与贝叶斯正则化算法训练同一个样本,By LM optimization algorithm with Bayesian regularization algorithm for training with a sample
Code_MATLAB_Optimization
- 这是龚纯《精通MATLAB最优化计算》随书源码(M文件)。基于MATLAB优化工具箱,代码包含的内容有:牛顿法等无约束一维极值问题、单纯形搜索法等无约束多维极值问题、Rosen梯度投影法等约束优化问题、L-M法等非线性最小二乘优化问题、线性规划、整数规划、二次规划、粒子群优化、遗传算法。-This is pure Gong " Mastering MATLAB optimization calculations," with the book source (M file)
LLR_compute
- 由4个.m文件组成,用于16QAM和64QAM调制的软信息的提取-By 4. M files for 16QAM and 64QAM modulation of the soft information extraction
WaveletBasedTextureRetrievalUsingGeneralizedGaussi
- 基于小波变换的特征检索算法,用了广义高斯函数和K-L距离为相似侧度 -Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback–Leibler Distance
MATLABoptimization
- matlab最优化程序包括 无约束一维极值问题 进退法 黄金分割法 斐波那契法 牛顿法基本牛顿法 全局牛顿法 割线法 抛物线法 三次插值法 可接受搜索法 Goidstein法 Wolfe.Powell法 单纯形搜索法 Powell法 最速下降法 共轭梯度法 牛顿法 修正牛顿法 拟牛顿法 信赖域法 显式最速下降法, Rosen梯度投影法 罚函数法 外点罚函数法 內点罚函数法 混合罚函数法 乘子法 G-N法 修正G-N法 L-M法
G-N
- 此文件包含用G-N法,修正G-N法,L-M法,Lsqnonlin求解非线性最小二乘优化问题MATLAB源代码,请大家参考-This file contains the method with the GN, GN law amendment, LM Law, Lsqnonlin MATLAB nonlinear least squares optimization source code, please refer to
BP1
- 采用L-M优化算法用以训练BP神经网络,使其能够拟合某一附加有白噪声的正弦样本数据。设计一个三层BP神经网络,其网络的隐含层神经元的激励函数为双曲正切型,输出层各神经元的激励函数为线性函数,隐含层有6个神经元-LM optimization algorithm used to train BP neural network to enable it to fit a white noise, sine additional sample data. Design a three BP neura
Nonlinear_Matlab.m
- 非线性最小二乘法Matlab实现 f=x(1)*K^x(2)*L^x(3)-b Cobb-Douglas生产函数-Matlab nonlinear least square method to achieve f = x (1)* K ^ x (2)* L ^ x (3)-b Cobb-Douglas production function
l_curve
- l_curve.m L曲线准则-l_curve.m L_curve principle............
L-M
- L-M,BP网络算法,用matlab语言编译-LM, BP network algorithm with matlab compiler
trainlm
- 采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr)-Using two training methods, namely, LM optimization algorithm (trainlm) and Bayesian regularization algorithm (trainbr)
Sylvester_Char_Polynomial_Var1.m
- Sylvester equations solving via the characteristic polynomial approach- using Sylvester operator s characteristic polynomial L
plot3d_2
- This function produces an image of a 3D object defined by matrix a(l,m,n) in terms of voxels the image is a view after rotating the object by angles alfa and beta (in degree) b is the image and d is its ditance to the viewer matrix The first figure d
LU_factor.m
- Method with Gaussian Elimination without Pivoting LU factorization of matrix A using Gaussian-elimination without pivoting Inputs : A --> n x n matrix Outputs : L (lower triangular) && U (upper triangular) - Method with Gaussi
lu_pivot.m
- Method with Gaussian Elimination with Pivoting function [L,U,P] = lu_pivot(A) - Method with Gaussian Elimination with Pivoting function [L,U,P] = lu_pivot(A)
L-Msuanfa
- matlab实现的L-M算法的函数拟合,可以用了进行函数的拟合-matlab implementation of the LM function fitting algorithm can be used for the fitting function
kmeans
- function [L,C] = kmeans(X,k) KMEANS Cluster multivariate data using the k-means++ algorithm. [L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class label per column in X and a size(X,1)-by-k matrix C containing the centers
pcm_quan_enco
- file Matlab abc xyz a b c d e f x y z d h i k l m n s
L-m
- l_m 算法 matlab实现