搜索资源列表
MahSom_v1
- This code is the implementation of Mahalnobis SOM algorithm published in this article. Face recognition under varying illumination using Mahalanobis self-organizing map S Aly, N Tsuruta, RI Taniguchi - Artificial Life and Robotics, 2008 - Springe
P4-1
- 传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中
GA
- 遗传算法(Genetic Algorithms,简称 GA)是一种基于自然选择原理和自然遗传机 制的搜索(寻优)算法,它是模拟自然界中的生命进化机制,在人工系统中实现特定目 标的优化。遗传算法的实质是通过群体搜索技术,根据适者生存的原则逐代进化,最终 得到最优解或准最优解。它必须做以下操作:初始群体的产生、求每一个体的适应度、 根据适者生存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染色 体的基因并随机变异某些染色体的基因后生成下一代群体,按此方法使群体逐代进化, 直
ABC_1
- 人工蜂群算法自2005年被Karaboga等人提出以来,以其操作简单、参数少、易于编程实现、收敛速度快等特点而受到越来越多的关注。2007年,Karaboga【2007】使用人工蜂群算法对多变量函数进行优化,并对由人工蜂群算法(ABC),遗传算法(GA),粒子温度算法(PSO)和粒子温度灵敏演化算法(PS-EA)产生的结果进行了比较。 结果表明,人工蜂群算法优于其他算法。2009年,Karaboga【2009】使用人工蜂群算法优化大量的数值函数,并对由人工蜂群算法(ABC),遗传算法(GA),粒