搜索资源列表
matlabnnp
- bp pid 神经网络源程序,大家多指教 我是初学者-bp pid neural network program, everyone is a beginner enlighten me
pid+bp
- 一种基于BP神经网络整定的PID控制的matlab源程序
pid
- BP神经网络PID仿真,利用BP神经网络构造PID控制器,并编写matlab程序对其性能进行仿真。
BP-PID
- PID和BP算法结合,运行过,可以实现,希望大家支持
bp_pid01.rar
- bp神经网络PID参数自整定 S函数实现 不怎么好 期待其它完美的,bp neural network PID parameter self-tuning
BP-PID
- BP神经网络的模型里面有具体的matlab设计图-BP matlab
BP_PIDControl
- 基于BP神经网络的PID控制算法,可以实现对正弦、方波、阶跃信号的跟踪-BP neural network based on the PID control algorithm can be achieved for the sine, square, step tracking signal
MATLABprogram
- 基于Matlab环境编写的一些神经网络PID控制和模糊PID控制源代码,其中包含BP pid,CMAC PID,RBF PID,BP数值逼近算法,BP预测控制以及模糊PID。-Matlab-based environment for the preparation of a number of neural network PID control and fuzzy PID control of the source code, which includes BP pid, CMAC PID,
GA
- 遗传算法优化BP神经网络程序,很不错的,值得学习-GA for BP neural network training
BPsimulation
- BP神经网络仿真 MATLAB仿真程序的程序文件-BP neural network simulation program MATLAB simulation program files
ANN
- matlab开发的RBF、BP PID算法,已经过测试-matlab development of RBF, BP PID algorithm has been tested
Matlab-BP
- 基于BP神经网络的PID控制 绝对能运行的-Based on BP neural network PID control can certainly run
CHAP4_3
- matlab+PID控制程序,基于BP神经网络的控制程序-matlab+ PID control program
bp_pids
- 别人文章中的BP-PID的S函数,可以试一试-BP-S function
BP_PID
- 一个bp-pid混合控制水箱的仿真程序,bp用来在线修正PID的三个参数-Bp-pid hybrid control of a tank simulation program, bp-line amendment to the three parameters of PID
bp_pid
- bp-pid算法,自己编写的,关于一个非线性求解的实际例子-bp-pid algorithm, I have written about the actual example of a nonlinear solution
BP-Neural-network-PID
- 神经网络的结构选4-5-3,学习速率为0.28,惯性系数为0.04,加权系数初始值取-0.5-0.5上的随机数。-4-5-3 neural network structure selection, the learning rate is 0.28, the inertia coefficient is 0.04, the initial value of weighting factor to take-0.5-0.5 the random number.
BP-AND-PID
- 卫星姿态控制的matlab/simulink BP神经网络PID控制器设计源代码及模型资料等-matlab/simulink BP PID
BP神经网络PID算法_matlab程序
- 神经网络优化pid控制程序的matlab文件,(Neural Network Optimization PID m file)
BP
- 基于BP神经网络的中PID控制,把被控对象的模型,现在变为二阶传递函数:G(s)=1/(0.003s^2+0.067s) ,想仿真此对象的阶跃跟踪的效果(Based on BP neural network PID control, the model of the controlled object, now turned into second order transfer function: G (s) = 1 / (0.003 s ^ 2 + 0.003 s), to the simul