搜索资源列表
Elevation-fitting
- BP 网络具有以任意精度逼近定义在紧致子集上的任意非线性函数的能力, 因而被广泛应用于识别、预测、拟合。-BP network has to approach any degree of accuracy defined in the compact subset of the capacity of any nonlinear function, which is widely used in identification, prediction, fit.
curvemain_kcsjjj
- 最小二乘法拟合一个非线性函数(这里是齿轮四杆机构的各边及齿轮大小的拟合) 多变量 多参数 函数表达式复杂(但必须有表达式,只有微分方程不行) 在数据较少的时候 拟合多个参数-A nonlinear function of the least squares fit (in this case each side of the four agencies gear and gear size fitting) complex expression of multi-variable multi-p
wenti_1_GA_LS
- 基于遗传算法的非线性方程的拟合,实现高拟合质量,不需要输入初值。-Fitting nonlinear equations based on genetic algorithms to achieve high quality fit, do not enter the initial value.
Wavelet_NNS
- 这是一个用小波神经网络进行非线性函数逼近的例子,拟合效果非常好-This is an example of a nonlinear wavelet neural network function approximation, the effect is very good fit
tuoqiu
- 本程序给出了最小二乘法拟合非线性特征下的模型参数的详细程序,能够精确估计模型参数和拟合模型。-This program gives a nonlinear least squares fit model parameters characteristic under detailed procedures to accurately estimate the model parameters and fitting models.
GA
- matlab编程,实现灰色预测模型,基于当前已有的数据,用来预测未来一段时间内的发展趋势,对于线性发展趋势拟合情况很好,对于非线性预测差一点。-matlab programming, gray prediction model based on the current available data to predict future trends over time, the linear trends fit in good condition, almost nonlinear predic
yengsan_v30
- 意信号卷积的运算,并且绘制图象,关于非线性离散系统辨识,利用最小二乘算法实现对三维平面的拟合。- Convolution operation is intended to signal and image rendering, Nonlinear discrete system identification, Least-squares algorithm to fit a three-dimensional plane.
2
- 一个MATLAB程序,关于BP神经网络的非线性系统建模,可用于非线性函数拟合-A MATLAB program, system modeling BP Nonlinear neural networks, nonlinear function may be used to fit
2554
- Based on piecewise nonlinear weight value Pso algorithm, Least-squares algorithm to fit a three-dimensional plane, Much posture, multi-angle, have different light.
classical PI model
- 使用一般PI模型拟合非线性曲线,最小二乘法参数辨识,逆模型前馈(The general PI model is used to fit the nonlinear curve, the least square parameter identification, and the inverse model feedforward.)