搜索资源列表
EOM
- 拉格朗日插值多项式拟合,牛顿插值多项式,欧拉方程解偏微分方程,使用极限微分求解导数(微分),微分方程组的N=4龙格库塔解法,雅可比爹迭代法解方程AX=B,最小二乘多项式拟合,组合辛普生公式求解积分,用三角分解法解方程AX=B-Lagrange interpolation polynomial fitting, polynomial interpolation Newton, Euler equations partial differential equations, Limit the use
shuzhijisuan
- 基于matlab开发软件 的选择输入类型的数值计算仿真程序 迭代方法包括 1可自启动的4阶龙格库塔法 2需要使用其他方法启动的方法-Matlab-based software development selective types of numerical simulation program including an iterative method can be Since the start of the four-Runge - Kutta method need
1
- 4阶龙格库塔方程,给出了一个实例,并且写出详细的步骤和过程,看到就能会。-4-order Runge-Kutta equations, given an instance, and write detailed steps and processes that can be.
MyRK4sys
- 四阶龙格库塔法解常微分方程组 四阶龙格库塔法解常微分方程组-4-Runge-Kutta
changweifenfangchengshuzhijie
- 自编常微分方程初值问题的常用算法,包括折线法、改进欧拉法、4阶龙格-库塔法-Self-compiled initial value problems of ordinary differential equations commonly used algorithms, including the broken line method, improved Euler' s method, 4-order Runge- Kutta method
matlabFourthorderRunge-Kuttamethod
- matlab编的4阶龙格库塔法解微分方程的程序-matlab Fourth-order Runge-Kutta method,
Volterra
- 使用“改进的欧拉公式”和“4阶龙格-库塔公式”分别对Volterra方程求解,绘制解曲线、相轨线,并将结果进行比较。-Using the " improved Euler formula" and " 4-order Runge- Kutta formulas," respectively, Volterra equations, draw solution curves, phase trajectories, and the results were co
RK4
- 数值分析中,显式4阶龙格-库塔法(Runge-Kutta)是用于求常微分方程数值解的重要迭代法。本算法优点是可以求高阶常微分方程(或多变量微分方程组)的数值解,并且可缩减求解时间-Runge-Kutta method
matlab-longe-kuta-
- matlab编的4阶龙格库塔法解微分方程的程序,龙格库塔方法是常用的微分方程计算工具-matlab compiled program 4-order Runge-Kutta method for solving differential equations, Runge-Kutta method is commonly used differential equations tool
matlab-3-Runge-Kutta-4-lRunge-Kutta
- 三、四阶龙格库塔算法编程方法,matlab自带效果类似,仅供参考-Third, fourth-order Runge-Kutta algorithm programming method, similar to the effect matlab comes for reference only
Lyapunov_Rossler
- 4阶龙格库塔,定义法计算rossler系统lyapunov指数,结果比较精确!-4-order Runge-Kutta, defined method rossler system lyapunov index results more precise!
rk4
- 常微分方程求解必备工具:4阶龙格库塔法 -Ordinary differential equation solver essential tool: 4-order Runge-Kutta method
Runge-Kutta-4
- 用Runge-Kutta 4阶算法对初值问题按不同步长进行求解,用于观察稳定区间的作用。-With a four order Runge- Kutta algorithm for initial value problems in asynchronous long, used to observe stability range.
lorenz
- 通过4阶龙格库塔方法求解混沌系统的微分方程-Through four order Runge-Kutta method for solving differential equations of chaotic systems
rungekuta
- 使用4阶龙格库塔以及样条函数分析处理数据-The use of four order runge kutta and spline function analysis data
runge_stable_domain
- 演示龙格库塔方法的绝对稳定区域,从1阶到4阶,且阶数可以调整。另外,区域的左右边界可以计算出来-Absolutely stable region demonstrates Runge-Kutta methods, from an order to the fourth order, and the order can be adjusted. Further, around the boundary region can be calculated
noncontrol-ballistic-simulation
- Matlab编写的纵向平面内无控弹道仿真程序,(内含气动数据),采用线性插值与4阶龙格库塔法解算常微分方程组-The longitudinal plane Matlab prepared uncontrolled trajectory simulation program (includes aerodynamic data), using linear interpolation with four first-order Runge-Kutta method ODE solver
Runge-Kutta
- 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。本程序为4阶龙格-库塔法的matlab文件,用于求解微分方程。-Runge- Kutta (Runge-Kutta) method is a widely used in engineering high-precision single-step algorithm. This program is a 4-order Runge- Kutta method matlab file for solving diff
4-Runge-Kutta-method
- 自己用matlab写的四阶龙格库塔方法程序-four Runge-Kutta method by matlab
RK4
- runge kutta 4 matlab code