搜索资源列表
svd
- 基于svd算法的matlab源码,压缩.bmp格式的位图为例-Based on the SVD algorithm matlab source, compressed. Bmp format Bitmap example
exact_alm_rpca
- RPCA (Robust Principal Component Analysis)是目前用于矩阵填充、图像去噪的最有效的优化方法。该代码是求解RPCA的一种数值算法——Exact ALM(Exact Augmented Lagrange Multiplier)-The most basic form of the exact ALM function is [A, E] = exact_alm_rpca(D, λ), and that of the inexact ALM function i
12345
- 彩色数字水印的程序,实现在彩色图像中通过DCT变换来嵌入水印信息-Color digital watermarking process to achieve the color image by DCT transform to embed watermarks
matlab
- 一段基于DWT的数字水印的MATLAB代码,图像分块,水印受攻击-A DWT-based digital watermarking of MATLAB code, image segmentation, watermarking attacks
tuxiangyasuo
- 一系列展示图像压缩技术的源代码。包括有:使用块截断编码的图像压缩(Block Truncation)、基于高斯金字塔变换的图像压缩(Gaussian Pyramids)、基于离散余弦变换对图像压缩(Discrete Cosine Transform)、基于奇异值分解(SVD)的图像压缩(Singular Value Decomposition)。给出的代码还可以用于2D图像噪声消除。-Image Compression A collection of simple routines
shengyin
- 不同SVD(全局、局部)处理声音、图像、地质信号,里面有一些自己编写的函数,有的地方不太完美-different SVD(global and local) in voice,figure,Geology processing
KSVD-P-Sparse-Representation
- K-SVD SPARSE REPRESENTATION 基于学习的稀疏表示图像分析方法,以去噪为例。-K-SVD SPARSE REPRESENTATION
DWT_SVD_codes
- 图像水印嵌入及提取 SVD DWT2,基于MATLAB 2012以上版本。运行时安装-Image watermark embedding and extracting SVD DWT2, based on MATLAB 2012 or later. Runtime installation
Local_MCA_KSVD
- 运用MCA算法,进行图像的分离,通过稀疏表示的K-SVD算法,将图像分为卡通和纹理部分-The MCA algorithm is used to separate the images. The sparse representation of the K-SVD algorithm is used to separate the images into cartoons and textures
ksvdsbox11-min
- KSVD 算法 K-SVD通过构建字典来对数据进行稀疏表示,经常用于图像压缩、编码、分类等应用(KSVD algorithm K-SVD sparse data is represented by building dictionaries, often used for image compression, coding, classification, and other applications)
107215802AnalysisKSVD
- 实现图像的稀疏编码,采用k-svd进行字典学习,omp算法进行稀疏表示系数的计算,内附有去噪例子(To achieve the image sparse coding, using K-SVD dictionary learning, OMP algorithm for sparse representation of the calculation of factors, with examples of denoising)
AnalysisKSVDbox
- K-SVD可以看做K-means的一种泛化形式,K-means算法总每个信号量只能用一个原子来近似表示,而K-SVD中每个信号是用多个原子的线性组合来表示的。 K-SVD通过构建字典来对数据进行稀疏表示,经常用于图像压缩、编码、分类等应用。(K-SVD can be regarded as a generalized form of K-means. The total K-means algorithm can only approximate one signal for each sem
demo
- K-SVD图片去噪,直接运行其中quzao.m文件即可。(K-SVD image denoising, directly run the quzao.m file.)
SVD
- SVD奇异值分解做降维处理,主要用于降维处理,可用于图像压缩,数据融合等领域(SVD singular value decomposition (SVD) is used for dimensionality reduction, which is mainly used for dimensionality reduction, and can be applied to image compression, data fusion and other fields.)