搜索资源列表
n_psvm
- n类PSVm 算法程序,相对于svm运算速度较快-n Class PSVm algorithm procedures, in relation to computing speed svm
libsvm-2.88.rar
- LIBSVM 是台湾大学林智仁 (Chih-Jen Lin) 博士等开发设计的一个操作简单、易于使用、快速有效的通用 SVM 软件包,可以解决分类问题(包括 C- SVC 、n - SVC )、回归问题(包括 e - SVR 、 n - SVR )以及分布估计( one-class-SVM )等问题,提供了线性、多项式、径向基和 S 形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。,LIBSVM is林智仁Taiwan Univ
stprtool.rar
- 统计模式识别工具箱(Statistical Pattern Recognition Toolbox)包含: 1,Analysis of linear discriminant function 2,Feature extraction: Linear Discriminant Analysis 3,Probability distribution estimation and clustering 4,Support Vector and other Kernel Machines,
libsvm-2.89.zip
- LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM )等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。 2.89版本是09年刚更新的一个版本。,LIBSVM
SVM
- 该工具箱包括了二种分类,二种回归,以及一种一类支持向量机算法 (1) Main_SVC_C.m --- C_SVC二类分类算法 (2) Main_SVC_Nu.m --- Nu_SVC二类分类算法 (3) Main_SVM_One_Class.m --- One-Class支持向量机 (4) Main_SVR_Epsilon.m --- Epsilon_SVR回归算法 (5) Main_SVR_Nu.m --- Nu_SVR回归算法-Support Vector Machin
SVM-classifier
- 用matlab实现非线性支持向量机分类器对多类进行分类。-Using matlab to achieve non-linear support vector machine classifier for multi-class classification.
SVM
- In this paper, we show how support vector machine (SVM) can be employed as a powerful tool for $k$-nearest neighbor (kNN) classifier. A novel multi-class dimensionality reduction approach, Discriminant Analysis via Support Vectors (SVDA), is in
SPIDER_mclass
- Multi-class Coding (adapted from from LS-SVM for SPIDER). Encode (code_MOC, code_ECOC, code_OneVsAll, code_OneVsOns) and decode (codedist_hamming, codedist_bay) a multi-class classification task into multiple binary classifiers.
class
- EEG signal classification by SVM
MATLAB
- MATLAB函数参考手册,查看matlab函数作用以及功能。- SVMLSPex02.m Two Dimension SVM Problem, Two Class and Separable Situation Difference with SVMLSPex01.m: Take the Largrange Function (16)as object function insteads ||W||, so it need more
SVM
- 该工具箱包括了二种分类,二种回归,以及一种一类支持向量机算法 (1) Main_SVC_C.m --- C_SVC二类分类算法 (2) Main_SVC_Nu.m --- Nu_SVC二类分类算法 (3) Main_SVM_One_Class.m --- One-Class支持向量机 (4) Main_SVR_Epsilon.m --- Epsilon_SVR回归算法 (5) Main_SVR_Nu.m --- Nu_SVR回归算法-The kit includes two
SVM-function-available
- 可以实现SVM函数曲线拟合,支持向量机曲线逼近,多类分类等等强大功能,无需修改源程序,直接可用-The SVM function curve fitting, support vector machines curve approximation, powerful multi-class classification, etc., without modifying the source code directly available
SVM-multiple-class
- 关于matlab的多分类问题的几篇文章,对于学习matlab 中的svm 多分类问题有帮助-Multi-classification on matlab several articles for learning in matlab svm multi-classification helpful
svm
- 于多类模式分类,使用svm工具箱:LS_SVMlab 使用平台:Matlab6.5 -Multi-class pattern classification, using svm toolbox: LS_SVMlab using the platform: Matlab6.5
svm-matlab-
- 支持向量机的源代码,可以实现分类和回归分析。-ctions on Intelligent Systems and Technology ABSTRACT LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM t
SVMRFE.m
- 基于RFE特征选择方法的多分类特征排序,Matlab平台(Multi class feature ranking based on RFE method)
SVM
- 训练集:trainset(); 分别取bedroom(1:5,:)和forse(1:5,:)作为训练集; 测试集:testset(); 分别取bedroom(6:10,:)和forse(6:10,:)作为测试集; 标签集:label(); 取bedroom的数据为正类标签为1;forse的数据为负类标签为-1.(Training set: trainset (); take bedroom (1:5,) and forse (1:5,:) as the training set; Tes
AverageBandPowers
- SVM模式分类,用于处理多种分类,此数据分类多种(SVM for class english is not good look at it)
libsvm-mat-2[1].89-3[FarutoUltimate3.0Mcode]
- 一般的支持向量机只支持二分类,使用libsvm可以实现多分类,原理也是基于二分类,然后在使用投票机制,经测验,libsvm的分类精度可达85%以上(Multi class supported by libsvm,after testing, the classification accuracy can reach 85%.)
SVM
- 利用三次二分类SVM实现三分类SVM,可以用自己的数据,完美运行。(Using the three-category SVM to implement the three-class SVM, you can use your own data to run perfectly.)