搜索资源列表
K_CenterPoint_PAM
- k中心点算法,也就是PAM算法。是数据挖掘中聚类分析的一种手段,用途广泛。-k center algorithm, i.e. PAM algorithm. Data mining is a means of cluster analysis, and versatile.
cluster
- science杂志上关于聚类的文章代码,通过重新定义距离和密度的概念,自动获取聚类中心-clustering Codes about an article published in a scientific journal
My_Kmeans
- java写的k-means,随机选择聚类中心-the realizationg of K-means clustering algotithm based on Java,with random selection of clustering centers
The-optimization-of-K-means
- 对k-means算法的优化,通过优化初始聚类中心的选择-The optimization of K-means algorithm by improving the selection of initial clustering centers
question-two
- K-means进行文字图像分类,中心谱聚类方法-spectral_clustering is used to classify the photos
cPP-isodata
- ISODATA聚类算法,显示聚类中心及每个类别的样本点-ISODATA clustering algorithm, cluster center display sample point and each category
my-k-means
- 这是一个k-means聚类算法,将一个四维量(比如有明确物理意义的花瓣长宽花萼长宽)按照几个中心点分成几类-This is a k-means clustering algorithm, a four-dimensional volume (such as a clear physical meaning petals calyx length and width aspect) is divided into several categories according to several ce
Kmeans
- 直接输入图片,以及类别数,返回分类结果,聚类中心,跌代次数。-Directly enter the picture, as well as the number of categories, the classification result is returned, the cluster center, down the number of generations.
GAKMeans
- 由于Kmeans聚类分析是一个局部的搜索过程,因此加入遗传算法进行全局搜索选择最优的初始中心点使得Kmeans算法产生较大的改进-Since Kmeans Cluster analysis is a local search process, so join a global search for the genetic algorithm to the optimal initial centers such Kmeans algorithm produces greater improve
DBScan03
- DBScan算法实现,用Java高级编程语言正确实现DBSCAN算法,DBScan是一种基于密度的聚类算法,它有一个核心点的概念:如果一个点,在距它e的范围内有不少于MinP个点,则该点就是核心点。核心和它e范围内的邻居形成一个簇。在一个簇内如果出现多个点都是核心点,则以这些核心点为中心的簇要合并。最终输出找到的簇及其数据点。-DBScan algorithm, using high-level programming language Java is implemented correctly
FCMCluster
- 模糊c-均值聚类算法 fuzzy c-means algorithm (FCMA)或称( FCM)。在众多模糊聚类算法中,模糊C-均值( FCM) 算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。- 模糊c-均值聚类算法 fuzzy c-means algorithm (FCMA)或称( FCM)。在众多模糊聚类算法中,模糊C-均值( FCM) 算法应用最广泛且较成功,它通过优化目标函数得到每个样本点
cluster
- 快速搜索与发现密度峰值聚类方法来确定聚类中心(Clustering by fast search and find of density peaks)