搜索资源列表
大地坐标系统的变换.ZIP
- 大地坐标系统的变换,主要适用于GPS学习者和大地测量者学习大地坐标系转换有关理论知识。-geodetic coordinate system conversion, mainly applicable to learners and GPS geodesy learning earth coordinate system conversion of the theoretical knowledge.
geomatics_gauss
- 测绘工程,大地测量学,高斯正反算,初学者参考-mapping, geodesy, Gaussian positive and negative counting, beginners reference
TransFmat
- MFC实现大地测量学中的各种坐标转换,功能齐全。-Using MFC to achieve geodesy s coordinate transformation, with fully function.
dadi
- 本程序实现了大地测量学的几个基本计算功能,包括大地主题正反算,高斯投影解算,和斜距改化功能-This program implements a few basic computing functions of Geodesy, including the earth and inverse operator, Gauss projection solver, and slope distance change function
geopot97.v0.4e.f
- 大地测量软件,可以计算大地水准面、重力异常、重力梯度等各种物理量-Geodesy software, coordinate transformation, geoid calculation
intlog5a
- 大地测量软件,引力积分公式,子程序,geopot软件一起使用-geodesy, gravity inegration
SHTOOLS2.8
- 大地测量学软件,可以计算各种物理量,包括重力梯度等-geodesy software
Geodesy
- 这是用VC6.0的MFC编写的【大地主题正反算】程序。-It is written with VC6.0 MFC
geodesy
- 此代码为大地测量程序代码,能够实现椭球参数转换,非常实用-This code is geodetic program code conversion ellipsoid parameters can be achieved, very practical
Distance(new)
- 大地测量学 将实测斜距转换为高斯平面边长-Geodesy in the measured slope distance is converted to the Gaussian plane side
FOUNDATION-OF-GEODESY
- 大地测量学基础,B,L,H==>X,Y,Z,X,Y,Z==>B,L,H,大地问题正解,大地问题反解,3度带或6度带高斯投影正解,3度带或6度带高斯投影反解-Geodesy base, B, L, H ==> X, Y, Z, X, Y, Z ==> B, L, H, land issues positive solution, anti-earth problem solution, with 3 degrees or 6 degrees with a Gaussian
FOUNDATION-OF-GEODESY-
- B,L,H==>X,Y,Z X,Y,Z==>B,L,H 大地问题正解 大地问题反解 3度带或6度带高斯投影正解, 3度带或6度带高斯投影反解,-B, L, H ==> X, Y, ZX, Y, Z ==> B, L, H Earth Positive Solution Solution 3 degrees counter-earth problems with or 6 degrees with Gauss projection positive so
GeodesyDlg
- 大地测量主题解算程序,利用改程序可以进行大地测量正反算-The C++ CODE can be used to calculate the elements of geodesy
Gauss-transform-
- 大地测量学领域高斯正反变换的程序实现,用简单的例子算法表达了高斯变换的过程-Program geodesy Gauss transform and inverse transform process of implementation, the Gauss transform the expression with examples of simple algorithm