搜索资源列表
glhundungrnn
- 用混沌理论和广义回归神经网络进行短期负荷的预测,取得了满意的效果-with Chaos Theory and the general regression neural network for short-term load forecasts, achieved satisfactory results
bestdimensionm
- 在用混沌理论和神经网络进行短期负荷预测时,神经网络的输入的选择至关重要,该程序用matlabl实现了基于混沌时间序列的嵌入维数的选择-using chaos theory and neural networks for short-term load forecasts, the neural network is essential to choose an input, The procedure used matlabl achieved a chaotic time series bas
s23uan
- 本程序时基于混沌理论和ELMAN神经网络的短期负荷预测,能取得很好的预测效果,直接使用该程序就能实现电力短期负荷预测,同样使用于其他类型的时间序列预测-the procedures based on chaos theory and neural networks ELMAN short-term load forecasts, can be achieved very good results forecast, the direct use of the procedure we will
20070
- V《牛顿法解方程之混沌情况》源代码(C完整应用程序代码)-V "Solving equations of Newton's chaotic situation" source code (C complete application code)
EWB-chaos
- 混沌电路设计的源码,采用ewb电路仿真软件编写的程序,适合科研应用-chaotic circuit design source code, adopted ewb circuit simulation software development procedures, application of appropriate scientific research
Chaosinthecontrolsystemonthephenomenon
- 介绍了实际控制系统中的混沌现象,并应用相轨迹、功率谱、Lyapunov指数等方法,证明了实际自动控制系统也存在混沌现象,并分析了产生混沌现象的原因
nonlinear
- 非线性动力学、分岔 Matlab 程序实现,弹簧质量系统在简谐激励作用下的受迫振动,弹簧的恢复力F与变形x的关系为F=kx3,动力学方程为...30cosmxcxkxFwt++= 其中,给定参数,1m=,0.3c=,1.0k=,1w=,初始条件为(0)3.0x=,.(0)4.0x=设系统的动态参数为F0,绘出系统状态变量随参数变化分岔图,绘图参数对应的系统各周期及混沌状态的时间历程图、相轨迹图、Poincare映射图-Nonlinear dynamics, bifurcation Matlab
renzhengchengxu1
- 对于混沌二值序列的生成以及混沌二值序列序列的优化-For the chaotic binary sequence generation and chaotic binary sequences sequence optimization
83985647SSA_1
- 一种求SSA的matlab代码,在混沌序列中很有用。-Find SSA matlab code, hope you can help.
chaos
- 混沌时间序列的一些常用分析方法,很有用。-Some common chaotic time series analysis methods, useful.
phase
- 混沌时间序列的相空间重构过程,其中包含很多算法,很实用。-Chaotic time series phase space reconstruction process, which includes many algorithms, very practical.
Lyponov
- 计算混沌时间序列下的李雅普诺夫指数代码,非常实用。-Chaotic time series is calculated under the Lyapunov exponent code, very useful.
gonglupu_FM
- 用Matlab实现四种混沌调频信号并画出其功率谱图-make four chaotic frequency modulation signal and its power spectrum plotted on a graph
case1
- 混沌微型机电系统自适应反步法控制技术,采用RBF神经网络逼近未知非线性项-Adaptive backstepping control of chaotic micro-electro-mechanical system