搜索资源列表
fenxing
- 为提高语音端点检测(VAD)在较低信噪比(10 dB)下的准确率,提出一种基于短时分形维数的改进算法。结合语音信号的特点,对2种常用的语音信号分形维数计算方法进行了比较和选择,同时采用动态跟随门限值实现语音端点的自适应检测。试验结果表明:对于信噪比6~10 dB的带噪语音,此方法可以实现整段语音的检测,而且具有一定的噪声鲁棒性,系统运行期间能够自适应调整门限值以适应环境噪声的变化,提高了VAD算法的准确率。这个是源码matlab。-In order to improve voice activi
endpoint_detection
- 噪声环境下的端点检测在语音信号分析和识别中占有重要地位。文中将分形理论中的分形记盒维数应用到端点检测算法中,采用了基于分形记盒维数与短时能零比相结合的端点检测算法,以分形记盒维数为主要判决条件,并在判决门限的设定上采用了自适应机制。-Noise environment endpoint detection in speech signal analysis and identification play an important role. Wen will be fractal theory
nqrgn
- 实现了图像的加水印,去噪,加噪声等功能,基于互功率谱的时延估计,计算多重分形非趋势波动分析matlab程序。- Realize image watermarking, de-noising, plus noise and other functions, Based on the time delay estimation of power spectrum, Calculation multifractal detrended fluctuation analysis matlab progr