搜索资源列表
33878
- SVM神经网络的数据分类预测——葡萄酒种类识别-SVM neural network data classification forecast- wine species identification
2
- 是关于神经网络的数据分类预测的一个源代码,关于向量机的,采用径向基核函数-Neural network data classification forecast
SVMmatlab
- SVM -MATLAB实现,可以用于分类,预测-SVM-MATLAB
BP-3
- SVM神经网络的数据分类预测-葡萄酒种类识别-SVM neural network data classification forecast- Wine Type Identification
trainscg_10
- 利用matlab软件BP网络工具箱,画出预测语音种类和实际语音种类的分类图-BP neural network using matlab software toolbox, paint and forecast the actual voice voice types and species classification map
libsvm
- 使用svm工具箱进行分类,回归,预测,归一化,训练-Using svm toolbox for classification, regression, forecasting, normalization, training
bp
- matlab的神经网络,可以用来预测,分类-matlab neural network can be used to predict classification
maxent
- 运用最大熵对一个文本中的类进行训练模型,然后可用模型进行预测,结果返回类名,是机器学习语言的重要部分,支持汉字分类-Use of maximum entropy of a text in class training model, the model can then be used to predict the results returned class name is an important part of machine learning languages, support for
Training_NPR
- MATLAB模式识别实现指标分类、评估、预测(如环境、业绩等-MATLAB pattern recognition to achieve target classification, evaluation, prediction (such as environmental, performance etc.
svmpredict
- 支持向量机分类函数,用于故障分类预测的正确率计算法函数-Support vector machine classification function,The correct rate of classification for fault prediction method of calculating function
huishangguanlian
- 相关向量机(RVM)的matlab源程序,包含快速算法,内含代码使用说明。 RVM采取是与支持向量机相同的函数形式稀疏概率模型,对未知函数进行预测或分类。 优点: (1) 不仅仅输出预测目标量的点估计值,还可以输出预测值的分布. (2) 使用更少数量的支持向量,从而显著减少输出目标量预测值的计算时间. (3) RVM不需要估计过多的参数. (4) RVM对是否满足Mercer 定理的核函数没有限制,适应性更好.--Relevance Vector Machine (RVM) of the mat
data-classification-by-SVM-
- 使用支持向量机进行数据的分类预测,所需样本数据较少,且预测精度高,分类效果较好。-Using support vector machines for data classification prediction, requires less sample data, and predict high precision, classification better.
ceshi
- 支持向量机分类预测应用例子,大家可以-Support vector machine (SVM) classification forecasting
WineClass
- 基于SVM的数据分类预测——意大利葡萄酒种类识别,SVM网络预测,结果分析-SVM-based data classification prediction- Italian Wine type recognition, SVM network prediction results analysis
RF
- 随机森林负荷预测,随机森林是一种分类器,在负荷预测中的应用很少。-Random forests load forecasting,Random forests is a kind of classifier, rarely used in load forecasting
LVQ
- bp神经网络进行仿真分类,人类乳腺癌的发生率预测与分析。-bp neural network simulation classify human breast cancer incidence and predictive analysis.
svm
- SVM神经网络的数据分类预测-葡萄酒种类识别,能够很好地预测葡萄酒种类。-SVM neural network data classification prediction- wine species identification, can be a good predictor of wine types.
nihe
- 模式分类中基于BP神经网络的曲线拟合;根据BP神经网络的模型,调用MATLAB工具箱函数,通过对样本数据进行训练,对测试样本数据进行成功的预测,预测的输出值与实际值之间几乎没有偏差。-Pattern classification of curve fitting based on BP neural network Based on BP neural network model, call MATLAB toolbox function, through the training sampl
chapter14
- 基于svm的数据分类预测,数据集是意大利葡萄酒种类的数据集,对葡萄酒进行种类识别以及分类。-Based on the svm data classification prediction, the data set is the Italian wine category data set, the wine species identification and classification.
红酒品质预测
- 红酒品质预测,11项红酒因素,nnet分类方法实现(Quality prediction of red wine)