搜索资源列表
Conjugate-Gradient-Method
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。-Conjugate gradient method (Conjugate Gradient) between the steepest descent between law and Newton'
hw
- 大型稀疏矩阵求逆,采用通过U、L分解的方法求解-Large sparse matrix inversion, through the L, U decomposition