搜索资源列表
bss-sond
- 提出了一种新的自适应盲源分离算法。在无噪音实时两源两传感器的情况下, 一旦观 测信号被白化, 只需要辨识一个特定的旋转矩阵就可以完成盲源分离, 并给出了能表征该旋转矩阵的角的自适应估计器。仿真结果表明, 当满足源峭度和不为零的条件时, 这种方法是一种稳定的和有效的分离算法。-proposes a new adaptive algorithm for blind source separation. In the absence of real-time two noise sources t
bksa
- 基于峭度的盲分离开关算法的matlab源代码程序-Blind Source Separation Based on Kurtosis switch algorithm
qiaodu
- 基于峭度的独立分量分析,包括并行提取和串行提取的程序-ICA based on kurtosis analysis, including parallel and serial extraction procedures for extracting
my_ICA
- 基于峭度的快速独立分量分析的程序,内含三个源信号-Based on kurtosis fast independent component analysis program, containing three source signal
work
- 对三路信号进行分离,基于峭度和基于负熵的独立分量分析(ICA)-The three way signal separation, based on the kurtosis and independent component analysis (ICA) based on negative entropy
qiaodu
- 振动信号的峭度指标在labview中实现,对振动信号的评价很准。-Labview achieve signal kurtosis
moshishibie
- 基于最小二乘支持向量机的模式识别,特征向量为滚动轴承的能量百分比和峭度系数-Pattern recognition based on least squares support vector machine (SVM), the percentage of energy eigenvector for rolling bearing and kurtosis coefficient
峭度指标VI
- 峭度指标是非平稳信号故障诊断的重要参数。峭度指标对信号中的冲击成分十分敏感,冲击成分能量越大,其峭度值就会越大,在故障诊断的时域分析中十分重要。本文件中将其独立做成了一个子vi,便于程序直接调用。(Kurtosis index is an important parameter of non-stationary signal fault diagnosis. The kurtosis index is very sensitive to the impact component in the
labview
- 使用labview采集16通道数据,采集10次,保存成tdms格式,并对所有数据进行频谱分析,有效值和峭度等指标的10次趋势分析,可在趋势图中点击光标查看原始波形(Using LabVIEW to collect 16-channel data, collect 10 times, save them in TDMS format, and analyze 10 times trend of all data, such as spectrum analysis, RMS and kurtosi