搜索资源列表
FuzzyComprehensiveEvolution
- 模糊综合评判算法,C程序,4个评价集,6个评价因子,欢迎下载-fuzzy comprehensive evaluation algorithm, C procedures, evaluation of four sets, six evaluation factor welcome Download
Fuzzy-operations
- 模糊综合运算。首先计算各因素的隶属度,然后要求输入权重,最后进行模糊运算,给出综合评价结果-Fuzzy operations. First calculate the membership degree of each factor, and then asked to enter the weight, the final fuzzy operations, given the results of comprehensive evaluation
c
- 关于模糊数学问题的综合评价方面的源程序代码-On fuzzy comprehensive evaluation of the source code
a
- 全国各地区发展水平的综合评价,由于各指标的重要程度不同,选取模糊数学中的隶属函数作为评价因素。-The level of development of various regions of the comprehensive evaluation, because all the important indicators of varying degrees, select the fuzzy membership function as the evaluation factors.
fuzzy_Evaluation
- 模糊评价原程序,可以修改,可以直接使用,可以实现单层,两层的评价,包含数据文件的转换程序,内含测试数据-Fuzzy evaluation of the original procedures, could be amended, can be used directly, can achieve single-layer, two-tier evaluation, including data file conversion process, including test data
MoHu-pingpan--C-yuyan-code
- 模糊综合评判算法(C语言编程)的实现: 本算法采用了二级模糊综合评判法,评价集个数为4,评价因子个数为11,实现c语言编译过程 -Fuzzy comprehensive evaluation of the implementation of the algorithm (C programming language): This algorithm uses two fuzzy comprehensive evaluation method, the number of evaluati
27194323mohu
- 模糊评价代码.对于进行二级模糊综合评判,可编制mohufun.m函数来实现 如[yy1,qdh,qdh1]=mohufun(R,L,M,w,XX,yy]来实现运行两次这个函数,并编制相应的m文件,其中放至两个这样的函数即可实 现 模糊评判的结果说明: 1:对于所有等级的隶属度之和为1。 2:输出结果随某个变量的增大而qdh1的结果呈现出单调递增或递减 3:最后的等级出[0.2 0 0 0.8]这种情况是正常的,和可拓评判中的对于等级的距离的概念是不一样的。
fuzzy-neurotic-net
- matlab神经网络 模糊神经网络用于评价问题(案例为对嘉陵江水质的评价)-fuzzy neurotic net on solving judging problem
mohu
- 模糊神经网络的预测代码,可用于电力负荷预测或者评价模型(The prediction code of fuzzy neural network can be applied to power load forecasting or evaluation model.)