搜索资源列表
RLS_LMS.rar
- LMS算法、RLS算法 及其二者的比较 有注释说明的 比较详细,LMS algorithm, RLS algorithm and the two more notes of a more detailed
BBS(3channls)
- 用MATLAB来实现3个通道的语音盲源分离 有源语音信号时实验结果图-To use MATLAB to achieve three-channel blind source separation of the active voice when the voice signal experimental results Figure
nspab
- 最新版计算三维HHT时频图的M文件,很有用-HHT the latest version of the calculation of three-dimensional time-frequency map M files, very useful
ica_r
- 带参考信号的盲源分离,很好用的程序,用于语音增强-ICA-R
zishiyingfufankui
- 用于神经网络自适应算法的Matla盲源分离 -Adaptive algorithm for neural networks of the Matla Blind Source Separation
AMUSE
- AMUSE,独立成分分析(ICA)算法之一,用于混合语音信号的盲分离-AMUSE, algorithm of independent component analysis, used in blind speech signal separation.
sobi
- SOBI算法,基于二阶统计量的独立成分分析算法,用于混合语音的盲分离。-SOBI algorithm, Second-Order Blind Identification algorithm, used in blind speech signal separation
ogrady2007_phd
- 国外欠定语音盲分离的博士论文,作者为Paul D. O’Grady,LOST算法的作者。该博士论文包括语音信号分离,非负矩阵分解等内容。-Sparse Separation of Under-Determined Speech Mixtures,A dissertation submitted for the degree of Doctor of Philosophy
pca
- 运用PCA进行盲分离的matlab源代码程序-matlab program based on PCA for blind source separation
bksa
- 基于峭度的盲分离开关算法的matlab源代码程序-Blind Source Separation Based on Kurtosis switch algorithm
PAST
- PAST算法程序,可以用于信号处理、盲信号分离-past algorithm
BSS_matlab
- 盲信号分离的matlab程序,很好很实用,你值得拥有!-This program is made by Matlab 7.0.It is very good.you can prosess it
119128684fastica
- 很好用的ICA算法,用于盲分离算法,MATLAB代码,-about ICA Using second-order statistics (different time-delay correlation matrix) of non-stationary and structural characteristics of the signal timing can roughly
MSZCMA_article
- 零/恒模信号的盲源分离算法 matlab实现-Zero/constant modulus signal blind source separation algorithm is proposed
tuxiangmangyuan
- 主要应用Matlab来实现图像的盲源分离而且是三个图像的处理问题采用的方法是FastICA算法-The main application of Matlab to achieve blind source separation method for processing an image problem and is three images FastICA algorithm is used
Sparse image and signal processing
- 这本书在稀疏的多尺度图像和信号处理提出了艺术状态,包括线性多尺度变换,如小波,脊波和曲波变换、非线性、多尺度变换基于中值和数学形态学算子。最近的稀疏性和形态多样性的概念描述和利用各种问题,如去噪,反问题正规化,稀疏信号分解,盲源分离,压缩感知。 这本书的理论和实践研究相结合的领域,如天文学、生物学、物理学、数字媒体应用和取证。最后一章探讨了信号处理中的一个范式转换,表明以前的信息取样和提取的限制可以用非常重要的方法加以克服。 MATLAB和IDL代码伴随这些方法和应用程序重现。 实验并说明