搜索资源列表
Irisabayes
- 对Iris数据进行贝叶斯两类分类,实现正确与错误分类的比较-classification based on Bayes to the date of Iris
cPP
- 介绍贝叶斯方法的理论依据及近几年的典型贝叶斯分类方法,并给出不同方法下垃圾邮件过滤实验数据对比,总结贝叶斯方法在垃圾邮件处理中的优点和局限性,并提出下一步可能的研究方向.-Presentation of theory and Bayesian methods Bayesian classification method typical in recent years, and gives the spam filter test data comparison of different meth
mechine-learning
- 本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。 全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统