搜索资源列表
ant
- 蚁群算法( ant colony algorithm) 是由意大利学者 Dorigo 等人[1 ,2 ] 于20 世纪90 年代初期通过模拟自然界 中蚂蚁集体寻径的行为而提出的一种基于种群的启发 式仿生进化系统。蚁群算法包含两个基本阶段:适应阶 段和协作阶段。在适应阶段,各候选解根据积累的信息 不断调整自身结构。在协作阶段,候选解之间通过信息 交流,以期望产生性能更好的解,这类似于学习自动机 的学习机制。蚁群算法最早成功应用于解决著名的旅 行商问
myMatlab-code
- In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. This algorithm is a member of the
ypea104-acor
- continuous ACO. In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. This algorithm
TSP双蚁群算法
- 蚁群算法是一种用来寻找优化路径的概率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为(The ant colony algorithm is a probabilistic algorithm used to find the optimal path. It was proposed by Marco Dorigo in his doctoral dissertation in 1992, inspired by the wa