搜索资源列表
pitchana
- 在语音中提取基音频率的程序。输入为.wav格式的语音文件,输出各帧基音频率。-This is a project of pitch extract of voice. When input is a wave file(.wav), the output will be the fundamental frequency of each frame.
易克初著 语音信号处理
- 易克初著 语音信号处理 包括语音识别的基本知识和理论-Yi Kechu,It includes the fundamental knowledge and theory of Process on Voice Signal.
huffmantreeandheap
- HUFFMAN和HEAP的JAVA实现。 用来实现文件压缩的基本部分。-HUFFMAN HEAP and JAVA. Documents used to achieve a fundamental part of compression.
qof-gen
- Generates the C source code for Query Object Framework objects and provides a test environment linked against QOF to query objects, store in XML and export into SQL files. Create the fundamental object code from XML exported by any other QOF project-
FUNDAMENTAL
- 《FUNDAMENTALS OF SPEECH RECOGNITION(语音识别基本原理)》(英文),大家可以好好学习下-"FUNDAMENTALS OF SPEECH RECOGNITION (voice consensus other basic tenets) "(English), you can learn where
pinlvjichange
- 测量频率范围:0~5KHZ,测量结果由LED显示; 基本频率上限3KHZ,下限10HZ,超出范围点亮L9报警; 上、下限可通过按键调整。 -measurement frequency range : 0 ~ 5KHZ, the measurement results from the LED display; 3KHZ fundamental frequency cap, minimum 10 9999, outside the scope of lights to install
AlgorithmsinC_Parts14
- Algorithms in C, Parts 1-4 (Fundamental Algorithms, Data Structures, Sorting, Searching) code-Algorithms in C, Parts 1-4 (Fundamental Algorithms. Data Structures, Sorting and Searching) code
AlgorithmsinC++Parts1-4
- Algorithms in C++, Parts 1-4 (Fundamental Algorithms, Data Structures, Sorting, Searching) code-Algorithms in C, Parts 1-4 (Fundamental Algorithms. Data Structures, Sorting and Searching) code
file_bases_matrix_operation
- 实现了基于文件的矩阵加减乘除运算。本程序没有定义特殊的结构类型,所有的算法都基于文件最基本的一些操作,包括文件的打开与关闭,文件指针的移动,以及文件的删除和修改。-realized on the basis of the document matrix arithmetic operations. There is no definition of the unique structure of the type, all the algorithms are based on the most
F0F1F2F3
- 语音情感是别中经常用到的基频F0和前三个共振峰F1F2F3的提取程序,并把引用的辅助函数nanmax.m,nanmean.m,nanmin.m一并附上。直接调用demo01.m即可。-emotional voice is not often used in the fundamental frequency F0 and the former three formant F1F2F3 the process of extraction, and the auxiliary function in
GraphLib_src
- 图的数据结构的实现。A fundamental graph library implements data structure and algorithms that you must have learned from text books. The Graph data structure is implemented as its natural structure. Taking advantage of C++ STL associative container, it is of h
fundamental
- 8kHz采样语音的基音检测程序,VC6.0环境下运行,附有matlab画图程序
voice_recognition.rar
- 使用自相关法提取基频法来判别男女声,并与带通滤波器幅度筛选法及幅度作差提取基频判别法分别作比较。最后的判别正确率接近90%。,The use of autocorrelation-based frequency extraction method to determine male and female voices, and with band-pass filter magnitude and rate of screening for differential extraction of
AFinePitchModelforSpeech
- 微软研究出来的一个基频提取算法,简单有效-Microsoft Research out of a fundamental frequency extraction algorithm is simple and effective
a
- 两位数的加减乘除四则运算。此程序能实现加、减、乘、除的计算。 -Four fundamental operations addition and subtraction multiplication and division
jincheng_tongxin
- 本代码为C编写的进程管理。基本能够实现操作系统中进程的管理。-The C code for the process of the preparation of management. Fundamental to the achievement of the operating system process management.
ProgrammingWindows_FifthEdition
- 「到Petzold的書中找找」仍然是解決Windows程式開發各種疑難雜症時的靈丹妙藥。在第五版的《Windows程式開發設計指南》中,作者身違背受敬重的Windows Pioneer Award(Windows開路先鋒獎)得主,依據最新版本Windows作業系統,以可靠的取材資料校定這一本經典之作一再一次深入探索了Win32程式設計介面的根本重心。 -"To look for Petzold s book" is still the Windows program to solve a var
cvery_448628
- 运行多用户, 保证能用 这网站上的另一个根本不能用 这是我从别的网站上下载下来的,板权归原作者所有。-Running multi-user, to ensure that this website can be another fundamental that I should not use this site to download from the other down the right boards to the original author.
speed
- 无刷直流电动机是以电子换相代替机械换相的直流电动机,它保持了直流电动机的优良特性,具有较好的起动和调速性能,而且它无需机械换相器,使电机的结构简单,可以从根本上克服一般有刷直流电动机易于产生换相火花的弊病-Brushless DC motor with an electronic substitute for mechanical phase of the DC motor, it has maintained the excellent characteristics of DC motor,
yinacf10
- The Yin algorithm was developed by Alain de Cheveigné of IRCAM-CNRS and Hideki Kawahara of Wakayama University. It allows for real-time continuous (for each sample) fundamental frequency estimation. It features a very low error rate and few tuni