搜索资源列表
MMSE_IC
- 基于LMS(最小均方误差算法)的自适应滤波 基于LMS(最小均方误差算法)的自适应滤波-based on the LMS (MMSE) algorithm based on the LMS adaptive filtering (minimum mean square error algorithm) the adaptive filtering based on the LMS (minimum mean square error algorithm) Adaptive Filter
minEfilter
- 本压缩包括最小均方滤波器的源码,可以在matlab上直接运行-compression including the minimum mean square filter source can be directly run Matlab
minimumphaseFIRfilter
- FIR滤波器设计中往往是线性相位,但不是最小相位,所以它的零点有部分在单位圆外。把单位圆外的零点映射到单位圆内,构成最小相位滤波器。-FIR filter design is often the linear phase, but it is not minimum phase, so it has some of the zeros outside the unit circle. To zero outside the unit circle is mapped to the unit ci
maxminfilter
- 数组数值的最大值最小值过滤,C++程序实现-Maximum Minimum filter array values , C++ program
kalman
- 卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,它适合于实时处理和计算机运算。 -Kalman filter based on minimum mean square error for the estimation of the best criteria to seek a recursive estimation algorithm, which is suitable for real-time processing and computing.
c5_ellipexam
- 五阶椭圆滤波器综合设计。具有1dB通带波纹,和一个最小20dB的阻带衰减。-Fifth-order elliptic filter integrated design. With 1dB passband ripple, and a minimum stopband attenuation of 20dB.
matlab
- 1. 给一段原始的语音信号(可以是自己录制的一段语音),加上一频率为3.8kHz的高频余弦噪声和频率为3.6kHz的高频正弦噪声(幅度自己可以选择),用窗函数设计一滤波器(要求最小阻带衰减为50dB)对加噪后的语音信号进行滤波,画出滤波器的频率响应曲线,画出滤波前后的时域图和频谱图。 需要用到的函数: fir1 用窗函数设计FIR滤波器的函数 2. 用GUI设计一界面(如图1所示)完成如下功能: 1) 输入一语音信号,画出语音信号的时域图和频谱图; 2) 对语音信号加噪处理,
syrcu
- 多目标跟踪的粒子滤波器,最小均方误差(MMSE)的算法,仿真效果非常好。- Multi-target tracking particle filter, Minimum mean square error (MMSE) algorithm, Simulation of the effect is very good.
excel
- 对excel文件进行读取,并用数组形式和图的形式进行显示。统计数据中的最大值,最小值,平均值,方差。采用中值滤波,滑动平均滤波等方法去除干扰。(The excel file is read and displayed in the form of array and graph. Maximum, Minimum, Average, Variance in Statistical Data. Median filter and sliding average filter are used to