搜索资源列表
littleworld
- NW小世界网络的构成原则为:从一个环状的规则网络开始,网络含有N个结点,每个结点向与它最近邻的K个结点连出K条边,并满足N>>K>>In(N)>>1。随后进行随机化加边,以概率p在随机选取的一对节点之间加上一条边。其中,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。改变p值可以实现从最近邻耦合网络(p=0)向全局耦合网络(p=1)转变。在p足够小和N足够大时,NW小世界模型本质上等同于WS小世界模型。 -NW constitu
1
- 利用K-L变换进行人脸识别。首先求得待辨识图像相对于训练集平均脸的差值图像,然后求得该图像在特征脸空间中的坐标,最后采用最近邻法对图像进行归类。-KL transform for face recognition. Obtain the first image to be identified image with respect to the difference between the average face of the training set, and then obtain the
KNNC
- 提出基于优化K-最近邻域分类器(K-Nearest Neighbor Classifier,KNNC)的轴承故障模式识别方-proposed K-Nearest Neighbor Classifier(KNNC), diagnosing method