搜索资源列表
blockX2
- 对离散语音信号进行分桢,得到一个二维的矩阵-of discrete audio signal-Lo, received a two-dimensional matrix
计算广义分形维数的matlab源程序
- 计算广义分形维数的matlab源程序
fenxing
- 为提高语音端点检测(VAD)在较低信噪比(10 dB)下的准确率,提出一种基于短时分形维数的改进算法。结合语音信号的特点,对2种常用的语音信号分形维数计算方法进行了比较和选择,同时采用动态跟随门限值实现语音端点的自适应检测。试验结果表明:对于信噪比6~10 dB的带噪语音,此方法可以实现整段语音的检测,而且具有一定的噪声鲁棒性,系统运行期间能够自适应调整门限值以适应环境噪声的变化,提高了VAD算法的准确率。这个是源码matlab。-In order to improve voice activi
endpoint_detection
- 噪声环境下的端点检测在语音信号分析和识别中占有重要地位。文中将分形理论中的分形记盒维数应用到端点检测算法中,采用了基于分形记盒维数与短时能零比相结合的端点检测算法,以分形记盒维数为主要判决条件,并在判决门限的设定上采用了自适应机制。-Noise environment endpoint detection in speech signal analysis and identification play an important role. Wen will be fractal theory
fenxingwaiwen
- 几篇分形的外文文献,来自IEEE,其中介绍分形在语音处理上的应用,有设计到分形维数轨迹的构造-Several fractal foreign literature, from the IEEE, which describes the fractal applications in speech processing, there are design to track the fractal dimension of the structure
Sfenciie
- 分词程序,HMM模型训练,维特特比解码,有说明文档。可直接使用。 -Segmentation process, HMM model training, Viterbi decoding, and documentation. Complete source code can be used directly.
Continuous-Sound-Input
- 激发哦if帕维的开的发奥阿伟房间诶哦撒娇的覅殴打三分爱的减肥IE偶发的减肥IE我-jdajfiewojfap padifewfnaoisjfkldsnv
mfcc_extraction
- 音频特征MFCC系数提取函数,包含静态12维,一阶差分和二阶差分24维,共36维,能够极大地提高音频识别的效果。-MFCC coefficient audio feature extraction functions, including static 12-dimensional, first-order and second-order differential difference dimension 24, a total of 36 dimensions, can greatly im
MFCC
- 通过波形文件数据,进行MFCC特征提取,做相关滤波、加窗、fft变换等,得到13维mfcc特征,若在13维基础上继续做一阶二阶差分可得到24维mfcc特征(AppWizard has created this mfcc application for you. This application not only demonstrates the basics of using the Microsoft Foundation classes but is also a starting p