搜索资源列表
DTWspeech
- 本 文 首先 介绍了语音识别的研究和发展状况,然后循着语音识别系统的 处理过程,介绍了语音识别的各个步骤,并对每个步骤可用的几种方法在实 验基础上进行了分析对比。研究了语音信号的预处理和特征参数提取,包括 语音信号的数字化、分帧加窗、预加重滤波、端点检测及时域特征向量和变 换域特征向量.其中端点检测采用双门限法.通过实验比对特征参数的选取, 采用12阶线性预测倒谱系数作为识别参数。详细分析了特定人孤立词识别算 法,选定动态时间弯折为识别算法,并重点介绍其设计实现。 在
study-on-speech-
- 就目前三种主流的语音识别算法:动态时间规(DTW)、隐马尔科夫模型(HMM)和人工神经网络(ANN)。分析它们的原理、特点及实现过程,对 DTW 的语音识别进行实验,通过对比分析三种算法的特点,结合本文研究的实际情况,选择 DTW 作为研究的重点,提出利用遗传算法对其进行改进。 -The three mainstream speech recognition algorithms: Dynamic Time Regulations (DTW), hidden Markov model (HM
JLDATA
- 摘 要:本论文主要研究了语音识别的基本原理,对语音识别系统的构成进行分析处理,其中包括预处理、特征参数提取、建立模块库、识别匹配几大部分。预处理又包括语音采样、预加重、加窗(汉明窗)、端点检测;特征提取的参数是梅尔频率倒谱系数MFCC。 该语音系统采用的是动态时间伸缩算法(DTW),研究对象是特定人的语音识别,并在MATLAB平台上实现。为了进行后续研究,首先使用电脑中的录音系统录制了阿拉伯数字0—9的语音文件,并转化成 “.wav”格式的文件。-Abstract: This thesis