搜索资源列表
jisuanmofangjuzhen
- 计算魔方矩阵的演示程序源代码,很有意思,大家可以试一试-Cube matrix calculation of the display program source code, it is interesting that we can try
线形方程组求解
- 用Gauss消元法、选列主元的Gauss消元法求线性方程组(1)的解,要求输出增广矩阵的消元变化过程。 用Gauss消元法、选列主元的Gauss消元法求线性方程组(1)的解,要求输出增广矩阵的消元变化过程 42x1+2x2+3x3=3 x1+7x2+7x3=1 -2x1+4x2+5x3=-7 算法思想:Gauss消元法是将线性方程组化为上三角形线性方程组,然后再用一个回代过程求这个上三角形线性方程组的解;选主元的Gauss消元法是在Gauss消元法上增加了选列主元
MPI
- 数值并行算法MPI编程实现 第十八章 矩阵运算 第十九章 线性方程组的直接解法 第二十章 线性方程组的迭代解法 第二十一章 矩阵特征值计算 第二十二章 快速傅氏变换和离散小波变换
LUGPU1.0
- 使用GPU的强大并行计算能力来实现稠密矩阵的LU分解计算。
matrix
- 基于MPI并行计算 我们实验使用的 矩阵的运算程序-MPI parallel computing based on our experimental procedure used in computing matrix
MPI_Possion_model
- C语言编写的并行计算柏松矩阵,优化计算柏送程序时间。-C language Poisson matrix parallel computing, optimizing the delivery procedures for the calculation hodginsii time.
EE
- 这个程序实现了计算矩阵特征值,包括最大的和最小的。-This program enables calculation of matrix eigenvalues, including the largest and smallest.
parallel-invert
- 矩阵求逆的并行计算实现,带数据 mpi+vc6.0-parallel compute of matrix inverse
SPARSE_CODE_DEMO
- C++实现的稀疏矩阵类,可实现稀疏矩阵的存储计算等功能-Now, instead of using 2D, we will use doubly-linked lists to present sparse matrices. There are various methods of organizing doubly-linked-lists. We not only store elements of sparse matrices but also implement operations
cannonMPI
- 并行计算中的cannon算法描述,采用C & openMPI库来执行算法,在矩阵大小100内效果显著-Cannon in the parallel computing algorithm descr iption, the use of C & openMPI library to perform algorithm, matrix size 100 results are obvious within
jacobi
- 自定义矩阵的Jacobi和 hesse矩阵计算-Custom Jacobi matrix and hesse matrix calculation
canon
- 并行计算实验,用于矩阵乘法的计算,canon算法,使用mpi方法-algorithm includes openmp,pthread,mpi,mapreduce and so on
cdfTDMA
- Finite Volume Method 流体仿真代码 利用TDMA算法计算二维矩阵 从而计算出二位场内各点的性质 可以通过修改步长和网格大小实现算法研究-A computational fluid dynamics code for determine the property of a two-dimensional plate by using Finite Volume Method. Grid size and time step are free to change in this
jaccobi
- jaccobi矩阵的MPI和openMP以及混合编程的并行计算程序代码。-The codes of MPI, openMP and mixed parallel programs for computing jaccobi matrix.
cuda2
- 最简单的矩阵并行计算方法,很简单 调用CUDA计算得到的 非常简单-The easiest parallel matrix calculation method is very simple call to get a very simple calculation CUDA
Jacobi
- 计算矩阵的解,是一种雅克比迭代,应用此程序可以很快的计算矩阵的解。-Computing solution matrix is a Jacobi iteration, the application of this procedure can quickly calculate the matrix solution.
Matrix-1
- opencl 并行矩阵相乘计算,可以选择AMD与 NVIDIA的GPU进行计算,并且具有计算串行与并行的时间比-opencl parallel matrix multiplication calculations, you can choose AMD and NVIDIA gpu
transposed.c
- 计算矩阵A的转置的并行C语言程序,使用MPI编译.输入矩阵A,计算它的转置.-MPI parallel matrix transpose algorithm, the input matrix A, A transpose computing, multi-process while achieving
smatrix
- 并行计算中用MPI实现矩阵的转置,MPI实现的源代码-Parallel Computing with MPI implementation matrix transpose, MPI implementation source code
Mutilayer
- 通过传递矩阵理论计算多层膜结构的反射及透射率(Calculation of reflection and transmittance of multilayer structures by transfer matrix theory)