搜索资源列表
1
- 相似度算法的实现, 在利用支持向量机进行模式分类的时候,有时需要考虑到实时性,为了提高实时性,则利用相似度算法减少样本集个数,从而减少训练时间和支持向量的个数,使得建立起的向量机实时性提高-Similarity algorithm, in the use of support vector machines for pattern classification, sometimes need to be considered real-time, in order to improve real
digital_signal_processing_in-C
- 有本书叫数字信号处理C语言程序集,这本书既涵盖信号与系统的知识,也训练你C语言的能力。-There are book called digital signal processing assembly C language, this book covers both the signal and system knowledge, but also train your ability to C language.
chapter15_0
- svm 的参数优化,利用交叉验证法选择最优参数c g,最终提高训练集的分类准确率,更好的提高分类器性能-Svm parameter optimization, the use of cross-validation method to the optimal parameter c g, and ultimately improve the training set classification accuracy,better improve the classifier performan
chapter15_PSO
- svm 的参数优化,利用pso(粒子群优化算法)选择最优参数c g,最终提高训练集的分类准确率,更好的提高分类器性能-Svm parameter optimization, the use of pso (particle swarm optimization algorithm) to the optimal parameter c g, and ultimately improve the training set classification accuracy, better impr
chapter15_GA
- svm 的参数优化,利用ga(遗传优化算法)选择最优参数c g,最终提高训练集的分类准确率,更好的提高分类器性能-Svm parameter optimization, the use of ga (genetic optimization algorithm) to the optimal parameter c g, and ultimately improve the accuracy of the training set classification, better improve
gaSVMcgForClass
- svm 的参数优化,利用ga(遗传优化算法)选择最优参数c g,最终提高训练集的分类准确率,更好的提高分类器性能,这是ga的功能函数源码-Svm parameter optimization, the use of ga (genetic optimization algorithm) to the optimal parameter c g, and ultimately improve the training set classification accuracy, better imp