搜索资源列表
minimumvar
- 基于最小均方误差准则的LMS算法对淹没在噪声中的信号进行的有效的提取.-based on the minimum mean square error criteria LMS algorithm drowned in the noise signal the effective extraction.
wgy
- 利用lms算法,实现FIR滤波器对噪声的滤波。参数有滤波器抽头数、步长延迟间隔、 采样点数、采样间隔。输出无噪声、干扰、提取的信号波形-Use of the the lms algorithm to achieve the FIR filter for noise filtering. Parameters the number of filter taps, the delay interval of step, sampling points, sampling interval. Sign
3
- 对基于LMS(最小均方)、NLMS(归一化最小均方)、RLS(递归最小二乘)算法的自适应噪声抵消系统进行MATLAB仿真,发现这几种算法都能从高背景噪声中有效地抑制干扰提取出有用信号,显示出了良好的的收敛性能,相比之下RLS算法去噪效果较好,呈现出更快的收敛速度,更强的稳定性和抑噪能力(the principle of LMS (minimum mean square), NLMS (normalized least mean square), RLS (recursive least squa