搜索资源列表
DESIGN_AND_IMPLEMENT_A_SYSTEM_oF_GRASP_IDENTIFICAT
- 机器人灵巧手的抓持分类是抓持规划的一个主要问题.本文应用模式识别技术设计和实现了一种基于高斯混合模型GMM 的分类器.采用Expectation Maximization(EM)算法估计GMM 的参数,对人手的抓持动作进行识别与分类,经过人手到机器人手的关节空间运动映射。
EM.java.tar
- EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,截尾数据,带有讨厌数据等所谓的不完全数据(incomplete data)。需要weka的算法包支持。-EM algorithm is Dempster, Laind, Rubin in 1977 for the parameters proposed by maximum
EM-java
- Em算法是一个参数估计算法,是一个重要的迭代优化算法-Em algorithm is a parameter estimation algorithm, is an important iterative optimization algorithm