搜索资源列表
JAVA实现文本聚类,用到TF/IDF权重
- JAVA实现文本聚类,用到TF/IDF权重,用余弦夹角计算文本相似度,用k-means进行数据聚类等数学和统计 知识。,JAVA realization of text clustering, using TF/IDF weight, calculated using cosine angle between the text of similarity, using k-means clustering for data such as mathematical and statistical
kmeans
- 改进的k-means方法,对聚类的实例节能型加权 少数类多数类的函数-Improved k-means method for clustering a small number of examples of energy-saving type of weighted majority of types of function
cluster1
- it is java code for k means clustering algorithm
83390049kmeans_clustering
- k-means聚类算法的java代码实现-k-means clustering algorithm java code
DocumentCluster
- clustering k-mean java
Datamining
- an intuitive implementation of the k-mean algorithme for data-sets clustering, you have to preprocess your data set as shown in the data.dat and data.dfn befor execute
KMEANS
- 输入:聚类个数k,以及包含 n个数据对象的数据库。输出:满足方差最小标准的k个聚类。处理流程: (1)从 n个数据对象任意选择 k 个对象作为初始聚类中心. (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;(3)重新计算每个(有变化)聚类的均值(中心对象) (4)循环(2)到(3)直到每个聚类不再发生变化为止-Input: number of clusters k, and n data object contains a
Kmeans
- 使用Java实现K-means(C均值)聚类算法-Using Java to achieve K-means (C mean) clustering algorithm
K_Means
- k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。下面给出我写的源代码。-work process k-means al
kmeans
- k-means clustering is a method of vector quantization, originally signal processing, that is popular for cluster analysis in data mining. k-means clustering aims to partition n observations into k clusters in which each observation belongs to the clu