搜索资源列表
KMeansJava
- 利用Java实现的K-均值算法,K-Mean 分群法是一种分割式分群方法,其主要目标是要在大量高纬的资料点中找出 具有代表性的资料点;这些资料点可以称为群中心,代表点;然后再根据这些群中心,进行后续的处理,可用于数据挖掘中的聚类分析-Java implementation using K-means algorithm, K-Mean grouping method is a fragmented grouping method, whose main goal is to a large nu
lingpipe-3.6.0
- 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能,包括主题分类(Top Classification)、命名实体识别(Named Entity Recognition)、词性标注(Part-of Speech Tagging)、句题检测(Sentence Detection)、查询拼写检查(Query Spell Checking)、兴趣短语检测(Interseting Phrase Detection)、聚类(Clustering)、字符语言建模(Character
Cluster_Analysis
- 用Java语言实现的空间聚类分析程序,对离散点按照距离标准进行分类。-Java language with the spatial clustering analysis procedures, in accordance with the distance between discrete points of criteria.
RandomizableClusterer.java.tar
- 该算法是对weka算法包功能的拓展,是聚类算法中的随机聚类分析。需要weka算法包支持。-The algorithm is a function of the weka package expansion algorithm is stochastic clustering algorithm in cluster analysis. Package to support the needs of weka algorithm.
java
- 聚类分析java设计思想 用于快速聚类分析算法的需求-Cluster analysis java design ideas for fast clustering algorithm needs
1
- 聚类分析(K-Means)程序实现及展现(-Cluster analysis (K-Means) to achieve and demonstrate procedures (
cluster
- k means cluster for clustering analysis and code implementation
kmeans
- k-means clustering is a method of vector quantization, originally signal processing, that is popular for cluster analysis in data mining. k-means clustering aims to partition n observations into k clusters in which each observation belongs to the clu
F_JIDtjl
- 模糊聚类分析动态聚类图,R模糊相似矩阵求传递闭包-Fuzzy cluster analysis of dynamic clustering diagram, R fuzzy similar matrix transitive closure of
fei_ss00
- Including AHP, factor analysis, regression analysis, cluster analysis, For lack of EMD, SNR largest independent component analysis algorithm.