搜索资源列表
-
0下载:
改进的k-means方法,对聚类的实例节能型加权 少数类多数类的函数-Improved k-means method for clustering a small number of examples of energy-saving type of weighted majority of types of function
-
-
0下载:
基于局部搜索能力强、收敛速度快的特点,首先初始化一个没有子种群的全局种群,再在全局种群中采用迭代搜索,并对其中的个体进行聚类,当聚类簇中的个体数目达到规定的最小规模时形成一个子种群,然后在各子种群中进行迭代搜索并重新进行聚类,从而提高进化过程中种群的多样性,增强算法跳出局部最优的能力.该算法基于weka,用于weka拓展功能,需要 weka算法包支持。-Based on the local search ability, the characteristics of fast convergen
-
-
0下载:
Density Based Spatial Clustering of Applications of Noise
Uses a density-based notion of clusters to discover clusters of arbitrary shapes, in spatial databases
Key idea: for each object of a cluster, the neighborhood of a given radius contains
-
-
0下载:
Java 实现k-means 聚类算法,分别以迭代次数及分配不再发生变化为算法终止条件,用图片作为数据集,比较运行时间-Java implementation of k-means clustering algorithm, respectively, and the distribution of the number of iterations of the algorithm terminates no change in the conditions, with a picture (o
-
-
0下载:
CLIQUE(Clustering In QUEst)是一种简单的基于网格的聚类方法,用于发现子空间中基于密度的簇。CLIQUE把每个维划分成不重叠的区间,从而把数据对象的整个嵌入空间划分成单元。它使用一个密度阈值识别稠密单元和稀疏单元。一个单元是稠密的,如果映射到它的对象数超过该密度阈值。(CLIQUE (Clustering In QUEst) is a simple grid based clustering method for the discovery of clusters bas
-