搜索资源列表
Custom-Evaluation
- 提出一种基于粗糙集与支持向量机的客户动态评估方法。根据客户群特点从当前价值、潜在价值和附加价值三个维度分析并构建客户评估指标,利用指标的年增幅率监测客户价值的变化规律。应用粗糙集布尔推理算法、粒子群算法实现连续属性离散化和知识约简。通过10-重交叉验证和网格搜索技术获取最优惩罚因子与核参数,缩放样本数据集并完成支持向量机一对一分类器的训练与测试。结果表明该评估方法能够实现周期性的客户价值评估与细分,具有很强的泛化能力。- A customer dynamic evaluation method
SLAM
- 本文研究了基于多传感器组合导航方法的SLAM,由于移动机器人无法通过单个传 感器得到可靠的信息,采用多传感器组合导航的方法可以很好的解决这个问题。本文用单个 CCD摄像头和里程计组合进行SLAM研究,并得到更准确的机器人位姿信息。首先用SIFT 算法对不同图像进行特征提取和匹配,得到本质矩阵,对它进行分解,可得到机器人的旋转 矩阵和平移向量(和实际相差一个比例因子)。然后,将它与里程计信息结合,得到机器人的 位姿。在此基础上,可以得到特征点在当前摄像机坐标系中的三维坐标,即创