搜索资源列表
A-global-reconstruction-model
- 已有的基于分块压缩感知的图像重构模型采用相同的测量矩阵以块 ×块的方式获取数据,解决了传统CS方法中测量矩阵所需存储量较大的问题,但由于采用分块重构,没有考虑 到图像的全局稀疏度,出现了大量的块效应。-Current image reconstruction models using block compressed sensing
Block-DCT-transform
- 分块DCT变换,基于压缩感知信号的压缩。详细阐述了信号基于DCT分块的变换算法。为后面的信号压缩和恢复做铺垫。-Block DCT transform based on compressed sensing signal compression. Elaborates the signal based on the sub-block of DCT transform algorithm . For the following signal compression and pave the wa
OMP
- :针对压缩感知算法重建时间长、图像重建质量不高等不足 , 在认真分析压缩感知算法的基础上 , 提 出一 种压缩感知多描述并行算法。为了提 高系统运行速度和重建 图像质量, 将 经过稀疏 变换后 的系数进行 交织抽 取 , 分成多个子图像 , 再利用 Op e nMP将子图像分配到各线程中并行实现分块压缩感知。实验结果表明, 随着抽 取数的增加,图像的重建质量呈上升趋势, 在 3 2抽取时图像的重建质量比单抽取的高出了7. 2 4 dB; 随着线程数 的增加 , 程序的执行效率不断提 高, 最高可