搜索资源列表
rldw
- 本文对几何模型匹配方法进行了研究,提出了一套完整的人脸定位算法。在预处理部分,采用了特别的增强人脸特征与脸部皮肤之间对比度的方法及局域取阈值二值化方法,改进了预处理的效果。在图像分割部分,实现了经典的分合算法,并且使用成组算法改进了分合的效果。在人脸匹配部分,实现了基于眼睛和嘴的几何模型匹配,并对评价函数的构造进行了研究-geometric model of this matching method for the study and submit a complete set of facia
AutomaticImageSegmentationAlgorithmThreshold
- 摘 要 该文提出了一种新的图像阈值分割算法。该算法通过求取最大模糊熵准则下,灰度均值直方图的最佳模糊划分 参数来确定两个模糊集 和 ,图像分割阈值即选取为两个模糊集的交点。该算法用 的模糊熵定义适应度函数, . / 01234 采用改进的遗传算法寻求最佳模糊参数。该文对遗传算法的改进包括,给出了缩短染色体码长的编码方法和性能良好的 改进的单点交叉算子和均匀变异算子。实验结果表明,该算法的分割效果与二维模糊熵算法接近,而计算时间还没有用 到二维模糊熵算法的一半。
PSOBPlunwen
- 基于PSO的BP训练算法论文:在BP训练算法中,关于变权值、学习速率、步长的问题已被广泛地研究,几种基于启发式改进的技术也表明具有改善训练时间以及避免陷入局部最小的明显效果。这里BP训练过程由基于PSO同时优化log—Sigmoid函数与网络权值的新算 法(PSO。GainBP)实现。实验结果表明,PSO—GainBP比传统基于PSO的BP算法在网络训练方面具有更好的性能。-PSO based on the BP training algorithm Papers: In the BP tr
juleisuanfa2
- 介绍了基于C均值聚类和基于核函数的C均值聚类两种图像分割的方法-Introduced based on the C-means clustering, and Kernel-based C-means clustering two kinds of image segmentation methods
level-set
- 水平集方法的诞生有效解决了以前算法不能解决的在曲线演化过程中的拓扑变化问题,其核心是利用水平集这一数学理论来对能量函数进行极小值求解的曲线演化过程,通过求解极小值最终获取目标轮廓从而达到图像分割的目的 为了解决不同应用领域的图像处理问题,各种相应的基于水平集方法的图像分割算法已被提出,大量的研究者仍在不断地改进和提高这些算法的效率和有效性.对现有的用于部分图像分割的水平集方法进行了综述,主要介绍传统水平集方法无重新初始化水平集方法连续水平集方法以及最近相关的改进方法,并简要讨论了各种方法的优缺点
otsu
- 类间方差法对噪音和目标大小十分敏感,它仅对类间方差为单峰的图像产生较好的分割效果。 当目标与背景的大小比例悬殊时,类间方差准则函数可能呈现双峰或多峰,此时效果不好,但是类间方差法是用时最少的。-Variance between class size of the noise and the target is very sensitive, it only to the between class variance to unimodal images produce better se
fengge
- 可以将光谱数据3维数据、样本个数作为输入,得到光谱平均值以级分割目标样本之后的数据。(The 3 dimensional data of spectral data and the number of samples can be used as input to get the spectral mean value after the target sample is segmented.)