搜索资源列表
3
- 摘要:为了提高图像复原算法的性能 ,提出了一种改进的奇异值分解法估计图像的点扩散函数。从图像的退化离散模型 出发 ,对图像进行逐层分块奇异值分解 ,并自动选取奇异值重组阶数以减少噪声对估计的影响。利用理想图像奇异值向 量平均能谱指数模型 ,估计点扩散函数奇异值向量的频谱 ,再反傅里叶变换得到其时域结果。实验结果表明 ,该方法能 在不同信噪比情况下估计成像系统的点扩散函数 ,估计结果比原有估计方法有所提高 ,有望为图像复原算法的预处理提 供一种有效的手段。-Abstract : T
0
- 利用主元分析和奇异值分解进行人脸特征提取的方法(并详细阐述其在PQRSQT中的实现过程(包括读取图像文件U计算均值脸U求特征值和特征向量(计算人脸特征参数-实现过程均给出了MATLAB代码-Using principal component analysis and singular value decomposition facial feature extraction method (and detail its in the PQRSQT in the implementation pr