搜索资源列表
tuxiangpipei
- 在图像模板匹配问题中,基于像素灰度值的相关算法尽管已经十分普遍,并得到广泛的应用,但目前此类算法都还存在有时间复杂度高、对图像亮度与尺寸变化敏感等缺点.为了克服这些缺点,提出一种新的基于图像灰度值的编码表示方法.这种方法将图像分割为一定大小的方块(称为R-块),计算每个R-块图像的总灰度值,并根据它与相邻R-块灰度值的排序关系进行编码.然后通过各个R-块编码值的比较,实现图像与模板的匹配.新算法中各个R-块编码的计算十分简单 匹配过程只要对编码值进行相等比较,而且可以采用快速的比较算法.新算法对
A_New_Algorithm_ofFastFaceDetection_underComplexCo
- 使用一种新的假面变换和模板匹配的人脸检测算法,能够对复杂环境中大小不等的人脸 进行快速、准确的检测.算法首先通过假面变换来预测人脸位置上边沿的中心,然后对图像中的预 测位置进行模板匹配,设计了一类对照明变化、噪声干扰具有较强适应性的模板匹配方法,最后对 匹配结果进行验证,确定人脸准确位置.采用多种环境下的大量图片进行实验,结果显示该算法具 有较快的检测速度和较高的准确性及鲁棒性. -A novelalgorithm offacedetection based on mask
WaveletTransform
- 边缘是图像中最重要的信息,是模式识别、图像分 割以及场景分析的重要基础。边缘检测是图像处理领 域一项重要的技术和任务。图像中边缘通常解释为灰 度值有突然改变,像素梯度具有局部极大值。很多经 典的边缘检测算子如:Roberts, Sobel, Prewitt, Frei- Chen和Laplacian等,均以图像局部区域特征与特定 边缘模式匹配为基础,定义数个方向导数模板(一般为 窗口),将图像与模板进行卷积运算实现边缘检测。它 们具有实现简单,速度快速,易于应用
waveletanalysis
- 边缘是图像中最重要的信息,是模式识别、图像分 割以及场景分析的重要基础。边缘检测是图像处理领 域一项重要的技术和任务。图像中边缘通常解释为灰 度值有突然改变,像素梯度具有局部极大值。很多经 典的边缘检测算子如:Roberts, Sobel, Prewitt, Frei- Chen和Laplacian等,均以图像局部区域特征与特定 边缘模式匹配为基础,定义数个方向导数模板(一般为 窗口),将图像与模板进行卷积运算实现边缘检测。它 们具有实现简单,速度快速,易于应用
Tempj
- 基于几何特征的快速模板匹配算法,论文;基于几何特征的快速模板匹配算法-Fast Template Matching Based on Geometric Features,Fast Template Matching Based on Geometric Features,
fast-template-matching
- 本文提出一种基于图像边缘几何特征的快速模板匹配算法。算法利用边缘 点的位置和梯度方向作为匹配信息进行相似度计算。可以很好的避免因图像明 暗变化、光照不均匀、旋转所带来的影响,且对于部分遮挡的情况,亦可以得 到良好的匹配结果。为了得到边缘点坐标和梯度方向,本文根据曲面拟合原理, 通过平移变换,推导出精确梯度方向和亚像素边缘坐标的快速算法。既加快了 算法的处理速度,也是匹配算法高精度的前提保证。为了使匹配算法满足实时 性要求,主要采用阈值判断和图像金字塔算法的搜索策略。在阈值
Fast-Template-Matching
- 硕士学位论文 图像模板匹配快速算法研究-Research on Fast Algorithm for Image Template Matching