搜索资源列表
PCA
- 针对稀疏表示识别方法需要大量样本训练过完备字典且特征冗余度较高的问题,提出了结合过完备字典学习与PCA降维的小样本语音情感识别算法.该方法首先用PCA降维方法将特征降维,再将处理后的特征用于过完备字典训练与稀疏表示识别方法,从而给出了语音情感特征的稀疏表示方法,并确定了新算法的具体步骤.为验证其有效性,在同等特征维数下,将方法与BP, SVM进行比较,并对比、分析语音情感特征稀疏化前后对语音情感识别率、时间效率以及空间效率的影响.试验结果表明,所提出方法的识别率比SVM与BP高 与采用稀疏化前的
voice
- 语音情感识别研究进展综述2014年最新发表。-Review of progress in speech emotion recognition recently published in 2014.
speech-emotion-recognition
- 这是一篇2014年最新的语音情感识别的研究综述,非常权威,我自己就是看这篇文章来做研究的。-It is a synthesis of the latest research in a speech emotion recognition in 2014. It is very authoritative. I was reading this article to do research.
456
- 基于语音信号与心电信号的多模态情感识别研究和处理-Based on speech signal with the ecg signal modal emotion recognition research and treatment