搜索资源列表
基于XML的多媒体信息检索的研究
- 因特网的飞速发展与多媒体信息的广泛应用极大地改变了人们获取多媒体信息的方式和手段。各种多媒体信息检索系统已逐渐成为各类用户获取多媒体的主要工具,但是目前的两种多媒体检索方法—基于文本的多媒体信息检索和基于内容的多媒体信息检索,二者有固有的缺点,表现为:基于文本的多媒体检索,利用文本对多媒体进行描述,容易引起信息失真等缺陷。而基于内容的多媒体检索,在多媒体信息内容的描述、特征的自动提取、多媒体的同步技术、匹配和结构化的选择等方面具有问题。这些问题的出现导致多媒体检索系统的检索效果往往不能尽如人意,
自组织神经网络在文本分类中的应用研究
- 针对信息挖掘中的文本自动分类问题 提出了一种基于自组织特征映射网络的分类方法 网络由输入层和 竞争层组成 输入层节点与竞争层节点实行全互连接 输入层完成分类样本的输入 竞争层提取输入样本所隐含的 模式特征 并对其进行自组织 在竞争层将分类结果表现出来 分无监督和有监督两个阶段完成对网络的分类训练 该方法在特征提取时充分考虑了特征项在文档中的位置信息 构造出模糊特征向量 使自动分类原则更接近手工分 类方法 以中国期刊网全文数据库部分文档数据为例验证了该方法的有效性
TextminingtechnologySummary
- 文本挖掘,是一个对具有丰富语义的文本进行分析从而理解其所包含的内容和意义的过 程 对其进行深入的研究势必将极大地提高人们从海量的文本数据中提取信息的能力,具有很高的商业价值。-Text mining, that have a rich semantic text analysis in order to understand the content and significance of the process it contains its in-depth study is bound
IG
- 文本分类中特征提取的代码。采用信息增益法,对文本的空间向量模型能达到有效降维。文件的输入形式必须是词号-词频形式。- Text Categorization feature extraction code. Using information gain method, the vector space model of the text to achieve effective dimensionality reduction. Enter the file must be in the f