搜索资源列表
system-identification
- 采用时频聚集性较好的线性调频信号作为线性时不变系统输入激励,采用Gabor字典作为过完备原子库。在利用传统系统辨识法之前先利用稀疏分解算法将输出信号进行去噪处理,显著提高系统辨识精度。 具体包括互谱算法,信号的Gabor稀疏分解的详细代码-Space can be a time for sparse decomposition to solve the problem of huge memory needed。This approach, combined with the rapid d
mt
- 小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时频分析,借助时频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。利用小波方法去噪,是小波分析应用于实际的重要方面。-The wavelet analysis theory is a new signal processing theory. It has a very good topicality in time and frequency, which makes the wav
信号与图像的稀疏分解及初步应用
- 信号与图像的稀疏分解是信号与图像的一种新的分解方法,在信号与图像的压缩编码、去噪、信号的时频分析与信号识别等方面有看极为广阔的应用前景,是信号与图像处理研究领域中一个新的很有意义的研究方向。本书总结了国际上在这一研究方向 的研究进展以及作者多年来的研究成果。在稀疏分解方法方面,重点介绍了作者关于信号与图像稀疏分解快速算法的研究成果。在稀疏分解应用方面,重点介绍了作者在信号处理及图像压缩编码方面的研究成果。