搜索资源列表
HOG
- 关于梯度方向直方图的PPT PDF格式 很清楚的解释了HOG过程-PPT PDF format on the gradient direction histogram is a clear explanation of the HOG process
sport-target-detection-track
- 图像梯度方向直方图(HOG)特征基础上云模型运动目标检测算法,提出HOG特征为基础的均值漂移算法 -Moving target detection algorithm of image gradient orientation histogram (HOG) features based on cloud model proposed HOG feature based on mean shift algorithm
ISP_CarIdentify
- 图像处理在车牌图像预处理中的应用 灰度化 车牌图像灰度化 直方图均衡化 灰度拉伸 二值化 全局阈值法和局部阈值法 适用于车牌的二值化方法 边缘检测 图像梯度 几种常见的边缘检测算子 适用于车牌的边缘检测算子 -Image processing in the
HOG
- 基于梯度方向直方图( H OG) 特征的行人检测是目前检测精度较高的主流方法。针对基于梯度直方图特征的 行人检测存在检测精度还有待提高、向量维数大的问题, 提出使用梯度直方图统计特征加颜色频率和肤色特征描述行 人, 选取一些分类能力较强的block 作为最后的特征, 使用线性SVM 分类。在INRIA 库上的实验证明, 该方法能有效地 提高检测精度。-H istog r am o f or iented g radient( H OG) based on pedestr ian de
Matching-Algorithm
- 要:图像匹配是计算机视觉中许多领域的基础,特征提取则是图像匹配的基础,其中不变量特征是一 个重要的理论。SIFt是最有效的尺度、旋转、亮度不变量局部特征之一,但算法复杂、计算时间长。分析 了SIFt的计算时间分配,通过计算关键点的邻域梯度直方图时动态修改采样步长,大大提高了SWr的 计算速度。分析了基于SIFt特征的图像匹配算法,提出了双向匹配算法,提高了图像匹配的准确率。实 验结果表明所提出的方法是有效的-Scale invariant feature transform(SI
25292626
- 为了实现复杂环境下的人脸特征有效表达,提出一种改进的梯度方向直方图(HOG)人脸识别方法.首先以人脸图像网格作为采样窗口并在其上提取 HOG特征;然后将所有网格 HOG特征向量进行组合,实现整个人脸特 征表达;最后采用最近邻分类器进行识别.另外,比较了该方法与Gabor小波和局部二值模式(LBP)2种著名的人脸 局部特征表示方法的优劣.实验结果表明,在调优的 HOG参数下,在具有光照和时间环境等复杂变化的FERET人 脸库中,较少维数的 HOG特征比LBP特征有更好的表现,而且 HO