搜索资源列表
Simulation-visual-mechanism
- 提出一个小波域多尺度马尔柯夫随机场模型用于模拟视觉系统在图像分割中的若干功能。针对人类视觉系统具有特征检测器、等级层次性、双向连续性、学习机制等功能,对输入场景,该模型用小波变换提供该场景图像的稀疏表示,模拟特征检测器功能 用金字塔结构模拟等级层次性 用两类信息流模拟双向连接性,分别刻画自底向上的输入图像特征提取过程以及自顶向下的反馈过程 用迭代过程模拟学习机制 采用多尺度马尔柯夫随机场模型实现图像分割。-Put forward a wavelet domain multi-scale mark
Fast-Discrete-Curvelet-Transforms
- 快速曲线波变换理论属于稀疏表达的范畴,采用基函数与信号的内积形式实现信号的稀疏表示。-An Alogrithm for Multimodal Biometric Recognition Based on Feature Level and the Second-Generation Curvelet Transform
cs-speech-enhancement
- 文利用带噪语音经特征基函数矩阵转换后所具有的稀疏特性,用最大似然估计方法对转换后得到的稀疏 分量进行非线性压缩去噪,然后再经过反变换和重构恢复出原始语音信号的估计。特征基函数矩阵反映了语音数据本 身的统计特性,因此具有很好的合理性和可取性。仿真结果表明利用稀疏编码方法能极大程度地抑制背景噪卢,与小波消噪法相比优势明显。-a speech enhancement algorithm based Compressed Sensing.
小波变换与信号的稀疏表示
- 小波变换与信号的稀疏表示课程实验案例部分代码可用做参考
基于稀疏分解的微弱信号检测方法
- 微弱信号的检测在通信、雷达、声纳等领域有着重要的意义,一直是信号处理的难点。本文将信号稀疏 分解思想应用于信号检测,提出一种算法。算法中信号稀疏分解采用Matching Pursuit(MP)算法实现,原子采 用正弦波模型,通过对正弦波模型伸缩和平移形成过完备原子库。由MP分解结果,可检测出淹没在强噪声环境 中的微弱正弦信号的幅度、频率和初相位参数,从而恢复出待检测的微弱正弦信号。所提出方法在-40 dB极低 信噪比环境下可以同时检测多个正弦信号。计算机仿真结果证实了算法的有效性。