搜索资源列表
PSO-SVM.rar
- 改进PSO-SVM在说话人识别中的应用。通过对粒子群优化算法中惯性权重和全局最优值 的分析,提出了一种根据迭代次数而自适应变化的惯性权重的粒子群优化方法,Improvement in the PSO-SVM speaker recognition applications. Through particle swarm optimization algorithm in the inertia weight and the analysis of the global optimum val
云自适应粒子群算法
- 基于云模型的自适应粒子群算法,很有思想,很好!-Based on cloud model adaptive particle swarm algorithm, very ideological, very good!
求解药代动力学参数的自适应混合粒子群算法
- 摘要:针对传统方法具有初始值敏感和进化算法无法确定搜索范围等缺陷,将Nelder-Mead 单纯形与粒子群算法相结合,提出 了一种基于Nelder-Mead单纯形与粒子群算法的具有时变加速因子的自适应混合粒子群算法。将该混合算法用于血管外给药二 室模型参数优化的实验之中。仿真实验结果表明,算法计算精度高而且鲁棒性强,是一种新颖的解决药代动力学参数优化的较 好方法。
b
- 一种求解Job-Shop调度问题的 混合自适应变异粒子群算法 -Solving Job-Shop scheduling problem by hybrid particle swarm optimization with adaptive mutation
pso
- PSO算法的代码和文章写作。自适应粒子群算法和免疫粒子群算法。-PSO algorithm code and article writing. Adaptive particle swarm optimization algorithm and immune particle swarm optimization.
adaptive_dynamic_pso
- 针对标准粒子群算法在进化过程中种群多样性降低而早熟的问题 ,提出一种动态改变惯性权重的自适应粒子群算法.-For PSO population diversity in the evolutionary process and reduce premature problem, a dynamically changing inertia weight adaptive particle swarm optimization.
Drawing-Vectorization-References
- 几篇图纸矢量化的论文。基于模板匹配和SVM的草图符号自适应识别方法。基于图形识别的建筑模型三维重建。基于拓扑结构的工程图纸识别方法。基于优化粒子群的NCC模板匹配算法。建筑构件智能识别方法研究。-Vector drawing of several papers.
MOPSO-based-on-adaptive-mutaiton
- 基于自适应变异的对多目标粒子群算法的改进算法-Based on the multi-objective particle swarm algorithm for improved algorithm of adaptive mutation
粒子群算法matlab代码---讲解
- 粒子群算法自适应权重MATLAB程序加注释(AWPSO algorithm MATLAB procedures and notes, demo)
OPF control of dc grid
- 针对直流电网中的最优潮流问题,提出了一种基于模糊控制理论的自适应粒子群算法,以实现电网兼顾有功网损和电压质量的优化运行。(To solve optimal power flow problem in DC grid, an adaptive particle swarm optimization (PSO) algorithm based on fuzzy control theory is proposed in this paper, and optimal operation consi
自适应PSO与MPPT
- 将粒子群优化算法引入光伏电池最大功率追踪,对于研究MPPT的人员,可以参考学习(Particle swarm optimization (PSO) algorithm is introduced into maximum power tracking of photovoltaic cells, which can be used as a reference for people who study MPPT.)