搜索资源列表
Speech Enhancement Based On AUnvoiced-Voiced Model
- 摘要:基于语音状态模型的语音增强算法是当前语音信号处理的研究热点。把通常的LPC语音模型修正后,将得到两个语音模型:时变AR 模型、时变双AR模型。但是利用这些模型增强语音时,都没有考虑到语音的清音、浊音区别。为此本文引入了语音清浊音状态空间模型,这种模型在描述语音方面比时变AR模型、时变双AR模型要强,而且物理含义明显 同时在用含噪语音信号预测纯净语音信号时,引入遗忘因子和粒子滤波算法以降低计算复杂性,减小运算量。实验证明,增强后的语音信号信噪比有一定提高.且优于传统的LPC模型.
leastsquares
- 1. 一般最小二乘法 3 1.1. 一次计算最小二乘算法 3 1.2. 递推最小二乘算法 3 2. 遗忘因子最小二乘算法 6 2.1. 一次计算法 6 2.2. 递推算法 6 3. 限定记忆最小二乘递推算法 9 4. 偏差补偿最小二乘法 11 5. 增广最小二乘法 13 6. 广义最小二乘法 15 7. 辅助变量法 17 8. 二步法 19 9. 多级最小二乘法 21 10. Yule-Walker辨识算法 23 Matlab程序附录 24
RLSVLMS
- MMSE忙多用户检测算法的收敛性能分析,通过仿真选取了遗忘因子和训练序列,仿真结果表明该算法具有较小的误码率性能,可以有效地提高通信质量。-MMSE busy multi-user detection algorithm convergence performance analysis, simulation and training forgetting factor selected sequence, the simulation results show that the algorit
wzrh
- (1)针对在线计算量大这一缺陷,将预测控制中的柔化输出信号的思想推广到柔化输入信号,使得约束条件被简化为仅对当前控制量的约束,可以直接计算得出;同时该方法避免了求逆矩阵,大大减小了计算量,并能够保证控制算法的可行性和良好的控制性能。 (2)针对传统算法中设计参数整定困难这一缺点,应用基于BP神经网络变参数设计的广义预测控制算法,实现了对控制量柔化参数的在线调整。 (3)利用带有遗忘因子的最小二乘法对系统辨识。本文通过仿真发现该方法对于Hénon混沌系统并不完全适用,可考虑利用其他优化系统
ade_flipud
- 自适应均衡器的仿真程序:基于抽头系数,遗忘因子,噪声方差,初始化的延迟信号设计输入信号,利用LMS 算法建立自适应均衡器滤波信号。-Adaptive equalizer simulation program: based tap coefficients, forgetting factor, noise variance, the initialization of the input signal delayed signal design, the use of the LMS algor
Low-Complexity-
- 本文提出了一种低复杂度的变遗忘因子机制用于递归最小二乘恒模约束算法中来抑制干扰。改进的方法通过恒模代价函数的时间平均来调节遗忘因子,从而更快地跟踪干扰并抑制,该文章计算量低,收敛速度快。-This paper presents a low complexity variable forgetting factor recursive mechanism for lscm constraint method to suppress interference. Improved methods be
RLS3
- 利用MATLAB实现带遗忘因子的系统参数的估计,这里用到的是系统辨识中的RLS3法-Using MATLAB with forgetting factor to estimate system parameters, used here is RLS3 method of system identification
junyunxianzheng
- LMS 算法、RLS 算法,通过Matlab软件仿真验证进行了性能对比。(The LMS algorithm and the RLS algorithm are compared with the performance of the Matlab software simulation.)