搜索资源列表
Gabor变换在模态参数辨识中的应用
- 对Gabor时频变换在模态参数辨识中的应用进行了探讨,将基于Gabor系数展开的时频滤波方法作为参数辨识的前处理手段之一,该方法对于平稳、非平稳信号都适用。根据信号在时频域内的分布特征,可以直接观测系统的频率分布情况、模态密集程度、能量聚集性、各通道响应信号所含特征量的多少等信息,从而对响应信号的特征构成进行初步判断,并通过剔除、截取等操作实现对响应信号的滤波,更有利于模态参数的辨识。
117
- 针对非线性非平稳信号的去噪问题,提出一种基于主成分分析(PCA)的经验模态分解(EMD)消噪方法.该方法根据EMD的分解特性,利用PCA对噪声信号经EMD分解后的内蕴模态函数(IMF)进行去噪处理-For nonlinear and non-stationary signal de-noising is proposed based on principal component analysis (PCA) of the empirical mode decomposition (EMD) de
EEMD相关文件
- Hilbert-Huang变换(HHT)是一种新的非平稳信号处理技术,该方法由经验模态 分解(EMD)与Hilbert谱分析两部分组成。任意的非平稳信号首先经过EMD方法处理后被分解为一系列具有不同特征尺度的数据序列,每一个序列称为一个固有模态函数(IMF),然后对每个IMF分量进行Hilbert谱分析得到相应分量的Hilbert谱,汇总所有Hilbert谱就得到了原信号的谱图。该方法从本质上讲是对非平稳信号进行平稳化处理,将信号中真实存在的不同尺度波动或趋势逐级分解出来,最终用瞬时频率和能量来
基于 HHT 的船体结构应力监测数据 特征分析和去噪方法
- [目的]为了去除船体结构应力监测数据中的噪声信号,获得有效的数据信息,以便为后续数据挖掘提 供支撑,[方法]首先,采用 HHT 方法中的经验模态分解(EMD)算法对数据进行成分分析,得到固有模态函数 (IMF)和余项。然后,通过 Hilbert变换得到 Hilbert谱,证明应力监测数据的非平稳特性。最后,以信噪比(SNR) 和均方根误差(RMSE)为例,结合自适应去噪和小波阈值去噪两种方法对应力监测数据进行去噪效果比较。 [结果]结果表明,基于 HHT方法的自适应去噪和小波去噪都具有一定
结合双模多尺度 CNN 特征及自适应深度KELM 的浮选工况识别
- 针对可见光图像特征驱动的浮选工况识别方法的不足,提出一种基于双模态图像多尺度 CNN 特征及自适应深度自编码核极限学习机(Kernel Extreme Learning Machine,KELM)的浮选工况识别方法。先对泡沫的可见光、红外图像进行非下采样剪切波多尺度分解,设计双通道 CNN 网络对双模态多尺度图像进行特征提取及融合,将多个双隐层自编码极限学习机串联成深度学习网络对 CNN 特征逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策,最后改进量子细菌觅食算法并应用于深度自编码