搜索资源列表
wavePredict
- 随着新的数学工具小波分析的实用化为基于NN负荷预测模型性能的改善提供了理论依据对于电力系统负荷非线性时间序列的辨识在预测方法研究中应给予重视在本文所用的基于小波原理和NN融合的预测原理是具有强的非线性时间序列的辩能力由研究和仿真表明它能有效提高预测的精度-with new mathematical tools wavelet analysis based on NN into practical load forecasting model to improve the performance
动态规划与排队论
- 本书通过实例与算法程序设计介绍了常用的数学建模方法,包括多元统计、 时间序列分析、线性与非线性规划、多目标规划与目标规划、图论、动态规划、 排队论、优化智能算法、微分与差分、模糊数学、神经网络、计算机仿真、灰色 系统和层次分析法。
基于RBF神经网络的CPI预测
- 采用RBF神经网络的结构、特性和训练算法,根据CPI(消费者物价指数)与其影响因素之间存在的映射关系,应用神经 网络建立了多因素非线性时间序列预测模型。最后通过仿真实验和研究,把RBF神经网络与传统的BP网络预测结果进行比较,结果证明,该模型的预测精确度更高,结果令人满意。
C_CPaper
- 摘要:重构相空间是非线性分析的基础 ,利用联积分导出的 C2C方法是估计相空间重构参数延迟时间和延迟时间窗的有效方。由于混沌系统的初值敏感性和实际序列长度有限并带噪 ,使得 C2C方法估计出的和具有波动性。为了降低估值偏差 ,借鉴谱估计中平均法的思想 ,提出一种不同于已有文献利用整段序列估算和,而采用对序列分段估值后取平均的方法 ,并重点讨论了带噪序列的和 估值及序列长度对估值的影响。数值仿真证明这种平均处理方法对和的估值具有较好的有效性和可靠性。关键词:非线性时间序列 关联积分 重构参数 平均
nonlinear_time_series_analysis
- 非线性时间序列分析的简单教程,浅显易懂,适合初学者.-Nonlinear time series analysis
short-termloadforecastingwithchaostimeseries
- 文章展示了一种新的方法用于功率系统中短期负载预测。提出的方案使用混沌时间序列分析基于确定性混沌去捕捉复杂的负载行为特征。确定性的混沌允许我们重构一个时间序列并决定输入的变量个数。这篇文章描述了混沌时间序列对日间功率系统峰值的分析。确定性混沌的非线性图形通过多层感知器的神经网络得到。提出的方案在一个例子中具体阐述。-This paper presents a new approach to short-term load forecasting in power systems. The
Matlab
- 卡尔曼滤波器是一个对动态系统的状态序列进行线性最小误差估计的算法,一般用于线性系统。一般在运动跟踪领域中摄像机相对于目标物体运动有时属于非线性系统,但由于在一般运动跟踪问题中图像采集时间间隔较短,可近似将单位时间内目标在图像中的运动看作匀速运动,采用卡尔曼滤波器可以实现对目标运动参数的估计。-Kalman filter is a state sequence of linear dynamic systems smallest error estimation algorithm for lin
activity-recognition--based-on-hmm
- 一种HMM可以呈现为最简单的动态贝叶斯网络。隐马尔可夫模型背后的数学是由LEBaum和他的同事开发的。它与早期由RuslanL.Stratonovich提出的最优非线性滤波问题息息相关,他是第一个提出前后过程这个概念的。 在简单的马尔可夫模型(如马尔可夫链),所述状态是直接可见的观察者,因此状态转移概率是唯一的参数。在隐马尔可夫模型中,状态是不直接可见的,但输出依赖于该状态下,是可见的。每个状态通过可能的输出记号有了可能的概率分布。因此,通过一个HMM产生标记序列提供了有关状态的一些序
fui_v25
- 仿真效果非常好,时间序列数据分析中的梅林变换工具,关于非线性离散系统辨识。- Simulation of the effect is very good, Time series data analysis Mellin transform tool, Nonlinear discrete system identification.