搜索资源列表
Particle_filter
- 基于粒子滤波器的机动目标跟踪技术 首先 , 概 要介绍传统的Kalman滤波器,以及有所改进的扩展Kalman滤波器。 其次,为了能更好地解决在动态模型为非线性且噪声为非高斯的条件下对机动目标的 跟踪问题,通过概率统计理论详细阐述粒子滤波器基本原理。然后,针对不同的使用 条件,根据粒子滤波器的基本理论做出适当的修改和整理,就得到了四个相关的粒子 滤波器的变型,使用州以JLAB把它们对机动目标的跟踪性能作了详细地计算机模拟 仿真且用均方根误差更加精确地进行了比较。最后,把粒
non-Gaussian-noise-Identification
- 该文提出一种基于广义分数阶傅里叶变换和分数低阶Wigner-Ville 分布的数字调制识别新方法,该方法提取广义分数阶傅里叶变换的零 中心归一化瞬时幅度谱密度的最大值和分数低阶Wigner-Ville 分布幅度的最大值作为识别特征参数,并采用判决树分类器,实现了非高斯噪声下数字调制信号识别。-This paper presents a generalized fractional Fourier transform and fractional lower order Wigner-Vill
Gaussian--.wps
- 非高斯有色噪声中的谐波回复的方法研究,主要是SVD_TLS方法。-Methods of non-Gaussian colored noise harmonic restoration
mieka
- 高斯白噪声的生成程序,计算多重分形非趋势波动分析matlab程序,一些自适应信号处理的算法。- Gaussian white noise generator, Calculation multifractal detrended fluctuation analysis matlab program, Some adaptive signal processing algorithms.