搜索资源列表
paper4
- 点云的表面信息处理和绘制研究.点云的表面信息处理和绘制研究.-point cloud surface information processing and mapping study. Cloud of information processing and surface mapping studies.
OpenGLpointclouds
- OpenGL环境下点云模型的显示变换,介绍一种标准的3D点云模型OBJ文件的特点和基本结构,在VC++6.0平台下结合OpenGL完成了OBJ格式文件的读取和点云模型的三维显示、旋转、平移、缩放变换功能.实验结果表明,利用OpenGL开发的程序可以高效实时地实现点云的各种操作.-OpenGL environment, the display of point cloud model of transformation to introduce a standard 3D point cloud
chezuo
- 车座的点云数据,供暂时没有点云的朋友练习实验-the point cloud of a chezuo
Surfel_FILE_COMPRESSION
- 针对点云数据局部集中的特点,使用差值预测对点云数据进行预测处理 在预测的同时,根据IEEE2754 浮点数标准,简化浮点数的尾数,使用3. 5 Byte来表示一个浮点数,以提高压缩效果 然后对预测数据中连续重 复的字节使用该字节加该字节重复的次数的方式存储 最后对经过以上处理的数据使用一阶自适应算术编码进 行压缩。最终得到的程序在压缩比和内存占用两个方面远优于WinRAR、WinZip压缩软件-Point cloud data for the characteristics of l
SpectralSurfaceReconstructionfromNoisyPointClouds.
- We introduce a noise-resistant algorithm for reconstructing a watertight surface from point cloud data. It forms a Delaunay tetrahedralization, then uses a variant of spectral graph partitioning to decide whether each tetrahedron is inside or out
repairing_incomplete_data
- 基于神经网络的点云残缺数据修补方法,此方法具有较高的修补率和精度,可获得满意的修补效果。-Point cloud based on neural network method of repairing incomplete data, this method has a high repair rate and accuracy, availability of satisfactory repair result.
extractpointsofSTLmodel
- STL模型是由三角面片组成的,把组成三角面片的顶点提取出来就是对应STL模型的点云模型。-STL model is composed of triangular facets to form the apex of triangulated surfaces extracted from the STL model is the corresponding point cloud model.
STLmodel
- STL模型是由三角面片组成的,提取组成三角面片的顶点就会得到与STL模型对应的点云模型。-STL model is composed of triangular facets to form the apex of triangulated surfaces extracted from the STL model is the corresponding point cloud model.
REandNURBS
- 一篇关于点云预处理,利用NURBS生成曲面实体,并进行数控加工的论文,本着学习的交流的原则和大家共享,版权为原作者和原学校,希望对大家有帮助。-One on the point cloud pre-processing, the use of NURBS surface is generated entities, and make CNC machining of papers, in line with the exchange of learning the principles and
Efficient_Variants_of_the_ICP_Algorithm
- 斯坦福的一片文章 综述了迭代最近点算法的各种改进 客观地比较了他们优劣 提出了一个实时的高效组合 做点云配准必读-an artical from Stanforda. summarizes the variant of iterative closest point algorithm and objectively compare the advantages and disadvantages, finily proposed combination with a high-speed r
action
- 行为分析比较早的几篇论文,算法比较经典,有一篇是点云相关的-Behavior analysis of several earlier papers, the algorithm more classic, there is a point cloud is related to
ICP-point-cloud-registration
- ICP算法在点云配准中的应用,经典的迭代最近点算法-ICP algorithm for point cloud registration application, the classic iterative closest point algorithm
bunny2
- pcd点云文件格式,在pcl点云库中实现两个pcd文件的点云配准-pcd point cloud file formats to achieve two pcd file in the library pcl point cloud point cloud registration
LIDAR-point-cloud-data-p-and-a
- LIDAR点云数据处理与应用 -分析 L I D A R点云数据的获取原理及分类 , 探讨 Mi c r o s t a t i o n 的 t e r r a 模块 数据及 L I D A R点云数据 的分类处理 方法。- Get principle and classification, classification method to e
point-cloud
- 几篇不错的点云精简论文~值得学习~对于研究点云来说值得一看~-A few good papers of the point cloud which is worth learning~It is worth a look at the research point cloud.
point-cloud-depth-clour
- 这是将kinect采集的彩色图像和深度图像结合起来,形成点云-point cloud depth and clour
rgb-image---point-cloud
- 将二维彩色图像,随机的生成点云,以显示出来。-rgb image-point cloud
ICP-point-cloud-registration
- 三维激光点云配准是点云三维建模的关键问题之一。经典的 ICP 算法对点云初始位置要求较高且配准 效率较低,提出了一种改进的 ICP 点云配准算法。该算法首先利用主成分分析法实现点云的初始配准,获得较好 的点云初始位置,然后在经典 ICP 算法的基础上,采用 k - d tree 结构实现加速搜索,并利用方向向量夹角阈值去除 错误点对,提高算法的效率。实验表明,本算法流程在保证配准精度的前提下,显著提高了配准效率。 -Three-dimensional laser point cl
discrete-point-cloud-processing
- 离散点云处理的关键技术研究:包括数据处理、误差评定、离散点数据处理与分块操作。-Research on Key Technologies of discrete point cloud processing: including data processing, error uation, discrete point data processing and block operation.
Automatic posing of a meshed human model
- 我们采用无办法变形质量人体模板的网格从其原来的姿势对点云数据指定不同的姿势。在此方法中,我们首先建立粗模板网格和点云通过压缩的光谱嵌入技术,利用人体四肢之间的对应关系。基于这些对应关系,我们定义使用弹性能量泛函的非刚性配准的目标和应用离散的梯度流,以减少粗控制网格和点云之间的区别。然后可从之后使用均值坐标控制网格的变形变形的模板网格。(We employ a deformable, deformable human body template mesh to specify different